71653 **Administration** 1141519-99-6550-3 **DOT HS 808 941** February 1999 # Single-Unit Truck and Bus ABS Braking-In-A-Curve Performance Testing #### **Technical Report Documentation Pag** | 1. Report No.
DOT HS 808 941 | 2. Government Accession No. | 3. Recipients's Catalog No. | | | |--|-----------------------------|--|--|--| | 4. Title and Subtitle Single-Unit Truck and Bus ABS Braking-In-A-Curve | | 5. Report Date February 1999 | | | | Performance Testing | | 6. Performing Organization Code NHTSA NRD-22 | | | | 7. Author(s) Richard L. Hoover, J. Gavin | Howe, and Mark A. Flick | 8. Performing Organization Report No. VRTC-86-0387 | | | | 9. Performing Organization Name and Address National Highway Traffic Safety Administration Vehicle Research and Test Center P.O. Box 37 East Liberty, OH 43319 | | 10. Work Unit No. (TRAIS)n code | | | | | | 11. Contract of Grant No. | | | | 12. Sponsoring Agency Name and Address National Highway Traffic Safety Administration 400 Seventh Street, S.W. Washington, DC 20590 | | 13. Type of Report and Period Covered
Final | | | | | | 14. Sponsoring Agency Code NHTSA NRD-22 | | | 15. Supplementary Notes #### 16. Abstract This report documents the results of testing two buses and five straight trucks in braking-in-a-curve ABS performance tests. Federal Motor Vehicle Safety Standards (FMVSS) Nos. 105 and 121 do not currently require straight trucks and buses to meet braking-in-a-curve performance standards. Tractors are subject to these tests in FMVSS No. 121. The braking-in-a-curve tests were conducted by finding the maximum drive-through speed, making four stops at 75 percent of the drive-through speed, as is specified for truck tractors, and then determining the maximum brake-through speed. Maximum drive-through speed is defined as the fastest constant speed that a vehicle can be driven through at least 200 feet of curve arc length without departing the lane on a 500-foot radius curve with a 0.5 peak friction coefficient surface, with the driver making steering corrections as necessary. Maximum brake-through speed is defined as the fastest speed at which a full brake application can be made while the vehicle is in the curve without the vehicle departing the lane, with the driver making steering corrections as necessary. Determination of the maximum brake-through speed provided data on the potential margin of compliance or non-compliance for the test vehicles. Six out of the seven vehicles tested would comply with the performance requirements currently in effect for tractors of staying in the lane at 75 percent of the maximum drive-through speed (minimum required brake-through speed). These six vehicles remained in the lane during all four stops at the minimum brake-through speed and all had a significant margin of compliance. The seventh vehicle met the minimum requirement for the loaded condition, but did not pass the empty condition. It should be noted that while this vehicle had air brakes, it also had a gross axle weight rating greater than 29,000 pounds. Therefore, FMVSS No. 121 does not apply to this vehicle. The results of testing show that the braking-in-a-curve test is practicable, repeatable, and safe to perform for single univehicles. | Heavy Truck ABS Braking-in-a-Curve FMVSS Nos. 105 and 121 | | It is Distribution Statement Document is available to the public through the National Technical Information Service, Springfield, VA 22161 | | | |---|---|--|-----------|--| | 19. Security Classif, (of this report) Unclassified | 20. Security Classif. (of this page) Unclassified | 21. No of Pages
181 | 22. Price | | #### **DISCLAIMER** This document has been prepared under the sponsorship of the United States Department of Transportation, National Highway Traffic Safety Administration. The opinions, findings, and conclusions expressed in this publication are those of the authors and not necessarily those of the Department of Transportation or the National Highway Traffic Safety Administration. The United States Government assumes no liability for its contents or use thereof. When trade or manufacturer's names or products are mentioned, it is only because they are considered essential to the document and should not be construed as an endorsement. The United States Government does not endorse products or manufacturers. ### TABLE OF CONTENTS | TECH | NICAL | REPORT DOCUMENTATION | PAGE . | i | |-------|-----------------------------------|--|-----------|--------------------| | METR | RIC | CONVERSION | FACTORS | ii | | DISCI | LAIMER | 8 | |
, iii | | TABL | E OF C | ONTENTS | |
iv | | LIST | OF FIG | URES | |
vi | | LIST | OF TAE | BLES | |
vi | | ACKN | NOWLE | DGMENTS | |
vii | | TECH | NICAL | SUMMARY . | | viii | | 1.0 | INTR
1.1
1.2 | | |
 | | 2.0 | BACK
2.1
2.2 | FMVSS No. 105 | |
 | | 3.0 | TEST 3.1 3.2 | • | cks |
. 7 | | 4.0 | INSTF
4.1
4.2
4.3
4.4 | Transducer Information Driver Feedback Devices | |
10
11
15 | | 5.0 | BRAK | ING-IN-A-CURVE TEST ARE | ZA |
. 17 | | 6.0 | VEHIO
6.1
6.2 | | RAMESions |
. 20 | | 7.0 | TEST | PROCEDURE & TEST SEQUENCE | |------|-------|---| | | 7.1 | General Test Procedures and Test Sequence | | | 7.2 | Stability and Control, Braking-In-A-Curve Test Procedure | | 8.0 | TEST | RESULTS | | | 8.1 | Brake in a Curve Test Results | | | 8.2 | Summary of Other FMVSS 105 Test Results | | | 8.3 | Summary of Other FMVSS 121 Test Results | | 9.0 | SUMN | MARY | | 10.0 | APPE | NDICES - INDEX A-i | | | 10.1 | Appendix 1 - GMC School Bus Test Data (FMVSS No. 105) | | | 10.2 | Appendix 2 - Freightliner/Thomas Built School Bus Test Data | | | | (FMVSS No. 105) | | | 10.3 | Appendix 3- Freightliner 6 x 4 Straight Truck Test Data | | | | (FMVSS No. 121) | | | 10.4 | Appendix 4 - Peterbilt 6x4 Straight Truck Test Data Test Data | | | | (FMVSS No. 121) | | | 10.5 | Appendix 5 - Navistar 6x4 Straight Truck Test Data (FMVSS No. 121) A5-i | | | 10.6 | Appendix 6 - Navistar 4x2 Straight Truck 152-in WB Test Data | | | | (FMVSS No. 121) | | | 10.7 | Appendix 7 - Navistar 4x2 Straight Truck 148-in WB Test Data | | | | (FMVSS No. 121) | | | 10.8 | Appendix 8 - BM Roller Dynamometer Description and Test Data Plots . A8-1 | | | 10.9 | Appendix 9 - Plots of Pedal Force, Vehicle Speed, and Deceleration vs. Time | | | | For the Two Hydraulic Braked School Buses | | | 10.10 | Appendix 10 - Vehicle Information Sheets and Pictures of Vehicles, | | | | Brake Components, and Instrumentation | ## **List of Figures** | Figure 8.1: Figure 8.2: | Brake-in-a-Curve Speed vs. Vehicle ID Code
Brake-in-a-Curve Speed Ratio vs. Vehicle ID Code | . 29 | |-------------------------|--|-----------| | | List of Tables | | | Table 3.1: | Vehicle Specifications for VRTC Brake-in-a-Curve Tests (1996-1997) | 8 | | Table 4.1: | Data Acquisition Channel List for FMVSS No.'s 105 & 121 | 12 | | Table 4.2: | Weight of Typical Instrumentation Components for FMVSS | 16 | | T-11- # 1. | No.'s 105 & 121 Brake-in-a-Curve Tests. | 16
18 | | Table 5.1: | "Monitored Test Surfaces" Information for 1996 - 1997. Ballast CG Height Calculations for FMVSS No. 121 | 10 | | Table 6.1: | Brake-in-a-Curve Truck Tests | 22 | | Table 8.1: | Brake-in-a-Curve Test Results for FMVSS No.'s 105 & 121 | £1.4 £1.0 | | Table 3.1. | (1996 - 1997) | . 28 | | Table 8.2: | Summary of Effectiveness and Failed System Testing for | | | Tuble 0121 | GMC School Bus | 35 | | Table 8.3: | Summary of Effectiveness and Failed System Testing for | | | | Freightliner / Thomas Built School Bus . | 35 | | Table 8.4: | Summary of Fade and Recovery Test Results for | | | | GMC School Bus | 36 | | Table 8.5: | Summary of Fade and Recovery Test Results for | | | | Freightliner / Thomas Built School Bus | 36 | | Table 8.6: | Summary of Water Recovery Test Results for GMC School Bus | 37 | | Table 8.7: | Summary of Water Recovery Test Results for Freightliner / Thomas | 25 | | | Built School Bus | 37 | | Table 8.8: | Summary of Service Brake and Emergency Brake Stopping Distance for | 20 | | T 11 00 | Freightliner 6x4 Straight Truck | 39 | | Table 8.9: | Summary of Service Brake and Emergency Brake Stopping Distance for | 39 | | Table 8.10: | Peterbilt 6x4 Straight Truck | 37 | | 1 anie 0.10. | Navistar 6x4 Straight Truck | | | Table 8.11: | Summary of Service Brake and Emergency Brake Stopping Distance for | | | I abic 0.11. | Navistar 4x2 Straight Truck with 152 " wheelbase | 40 | | Table 8.12: | Summary of Service Brake and Emergency Brake Stopping Distance for | | | | Navistar 4x2 Straight Truck with 148" wheelbase | 41 | | | | | #### **ACKNOWLEDGMENTS** The testing program documented in this report was a coordinated effort by the National Highway Traffic Safety Administration (NHTSA) Vehicle Research and Test Center (VRTC) and the Transportation Research Center Inc. (TRC) to evaluate the stability and control capabilities of seven bus and straight truck antilock brake systems (ABS) on a low coefficient of friction surface in a brake-in-a-curve scenario. The authors wish to recognize the outstanding support of our research colleagues. Lyle Heberling was outstanding in
performing the tests and rigging the loads. Don Thompson was instrumental in preparing the data acquisition systems and providing calibrations. Dave Dashner and Leslie Portwood performed data analysis and developed tables. Ed Parmer's perseverance provided excellent graphics and pictures. The efforts of Jim Britell and Duane Perrin from NHTSA Research and Development and Jeff Woods, Sam Daniel, and George Soodoo from NHTSA Safety Performance Standards aided in the completion of the study. GMC, Freightliner, PACCAR (Peterbilt unit), and Navistar, our vehicle suppliers, provided a quick response to our vehicle needs. The Truck Manufacturers Association and Radlinski & Associates assisted with technical support. Richard L. Hoover J. Gavin Howe Mark A. Flick # Department of Transportation National Highway Traffic Safety Administration #### TECHNICAL SUMMARY | Report Title: Single-Unit Truck and Bus ABS Braking-In-A-Curve Performance Testing | Date:
February 1999 | |--|------------------------| | Report Author(s): Richard L. Hoover, J. Gavin Howe, and Mark A. Flick | | Testing was conducted in 1996 and 1997 on two hydraulic braked buses and five air braked straight trucks, all equipped with ABS, to determine if the braking-in-a-curve performance test in FMVSS No. 121 for tractors could also be applied to single-unit vehicles. The vehicles were subjected to the road test requirements in the respective Federal Motor Vehicle Safety Standards (FMVSS), either No. 105 or No. 121, plus the braking-in-a-curve ABS performance tests, which are not currently included in FMVSS Nos. 105 or 121 for straight trucks and buses. Six of the seven vehicles tested would comply with the performance requirements currently in effect for tractors by staying in the lane in at least three out of four consecutive stops, when subjected to a full treadle or pedal brake application, at 75 percent of the maximum drive-through speed (minimum required brake-through speed). In fact, these six vehicles remained in the lane during all four stops at the minimum brake-through speed and all had a significant margin of compliance. The seventh vehicle, the Navistar 4x2 with a 148 inch wheelbase, met the minimum requirement for the loaded condition. Here, it achieved a maximum brake-through speed of 78 percent of the maximum drive-through speed, but did not pass the empty condition, where the maximum brake-through speed was only 61 percent of the maximum drive-through speed. It should be noted that this vehicle had a drive axle with a gross axle weight rating of 30,000 pounds, which was greater than the 29,000 pound maximum GAWR specified in FMVSS No. 121 section S3(b), and therefore is not required to pass FMVSS No. 121 test procedures. In general, when determining the maximum drive-through speed, the test vehicle front end tended to plough out at the limit, departing the lane on the outside of the curve. When determining the maximum brake-through speed, the rear end of the test vehicle would tend to "walk out" at the limit, also departing the lane on the outside of the curve. After the first two vehicles tested during this program (the two hydraulic braked school buses) had been tested and returned to their suppliers, a change was considered to the pedal application section of the proposed ABS brake-in-a-curve test procedure. The change was to require that when performing the brake-through stops, a brake pedal application force of 150 pounds be applied within 0.2 seconds of initial pedal movement. However, after further review of the data and extensive discussion with the driver, this change to the proposed standard was not made. The maximum initial pedal force achieved during the stops in this study typically ran in the 60 to 100 pound range. Full ABS cycling did occur at these levels. The requested application rate would be awkward for the driver to meet. The driver commented that it was very taxing to his abilities to watch his speed, apply a repeatable pedal effort, and negotiate the curve without any of the wheels going out of lane, all while looking ahead at where he was going. The additional driver workload of reading a precise pressure measurement could cause visual overload and reduction in safety during the test. The geometry of the seating position, steering wheel, and brake pedal also contribute to the difficulty of this task. A brake pedal actuator device to apply the 150 pound in 0.2 second brake force would be required to produce repeatable pedal applications at this high rate. This would increase the equipment needed to perform the test. The 150 pound application rate is probably higher than necessary since full ABS cycling was achieved at lower pedal forces. In considering "apply times" for the pneumatic braked straight trucks, all of the test vehicles that had the appropriate instrumentation surpassed the FMVSS No. 121 required minimum control pressure of 85 psi (at the treadle valve) in less than 0.2 seconds as specified for tractors, This application time appears to be repeatable. In the authors' judgement, a simple data acquisition system with a 50 Hertz input filter, 100 Hertz or higher sample rate, with pre-trigger, and a brake pedal touch switch or motion sensor is appropriate for collecting this type of data. The 18 Hertz input filter used in this study was acceptable for measuring the transients associated with the initial brake application. The results of testing show that the braking-in-a-curve test is practicable, repeatable, and safe to perform for single unit vehicles. #### 1.0 INTRODUCTION #### 1.1 - Focus of the Study As indicated in the March 10,1995, final rule to require antilock braking systems (ABS) on all commercial vehicles, NHTSA (National Highway Traffic Safety Administration) conducted extensive testing on tractors in support of implementing the braking-in-a-curve test to require adequate stability and control during braking. NHTSA indicated that it would not be appropriate at that time to require dynamic test requirements for other types of hydraulic or air-braked heavy vehicles since only a small amount of testing by NHTSA on these type vehicles had been conducted at the time of the final rule. NHTSA also indicated that it anticipated conducting additional testing on these vehicles and would consider the later implementation of dynamic test requirements for these vehicles to supplement the equipment requirements. Testing was conducted in 1996 and 1997, at NHTSA's Vehicle Research and Test Center (VRTC), on two hydraulic-braked buses and five air-braked straight trucks, all equipped with ABS, to determine if the braking-in-a-curve performance test for tractors could also be applied to single-unit vehicles. The vehicles were leased **from** four suppliers for the purposes of conducting these tests. The vehicles were subjected to the road test requirements in the respective Federal Motor Vehicle Safety Standards (FMVSS), either No. 105 or No. 121, that are in effect on March 1,1999, and March 1,1998, respectively, with one exception. The exception was that the braking-in-a-curve ABS performance tests, which are not currently included in FMVSS Nos. 105 or 121 for straight trucks and buses, were included in this test program. #### **1.2** - Overview of the Report This report contains ten sections that describe the various aspects of the brake-in-a-curve test program. Section 2.0 contains background material with a primary focus on FMVSS No's, 105 and 12 1 general test procedures. A general description of the buses and straight trucks tested comprises section 3.0. The instrumentation installed on each vehicle is described in section 4.0. A description of the brake-in-a-curve test area is listed in section 5.0. Section 6.0 covers the center of gravity (CG) heights and load frame apparatus. The general sequence-of-test schedules for each FMVSS No. 105 and No. 121 standard are listed in section 7.0. Test results are given in section 8.0. Section 9.0 reflects on the practicability of the brake-in-a-curve test and reviews a few unresolved issues of this procedure. Section 10.0, Appendices, contains individual vehicle data synopses, Roller Dynamometer effectiveness test results, vehicle information sheets, and pictures of the test vehicles, brake components, and the instrumentation packages. #### 2.0 BACKGROUND FMVSS No.'s 105,121, and 135 have the purpose of insuring safe braking performance under normal and emergency conditions. FMVSS No. 105 applies to hydraulic and electric brake systems, FMVSS No. 121 applies to air brake systems, and FMVSS No. 135 applies to light vehicle hydraulic brake systems. These standards have test procedures for various aspects of the brake systems. The road tests for FMVSS Nos. 105 and 121 are briefly described in the following two sections. #### 2.1 - FMVSS No. 105 FMVSS No. 105 outlines procedures for Effectiveness Tests, Burnishes, Partial Failure Tests, Inoperative Power Assist, Failed Antilock Brake Systems (ABS), Fade and Recovery, Water Recovery, and Spike Stops. The Effectiveness Tests (a total of 4) are stopping distance requirements from 30 and/or 60 mph. The stopping distances are based on vehicle type/weight. The third effectiveness test is lightly loaded, while the others are at Gross Vehicle Weight Rating (GVWR). The First Effectiveness test was not performed in this study because the vehicles tested to FMVSS No. 105 were received with the initial Burnish already performed. There is an initial Burnish and 3 **Reburnishes**. The initial Burnish consists of 500 snubs from a high speed to a lower speed at set deceleration rates. There are two possible test sequences that have different speed requirements for each snub. The **Reburnish** procedure is the same for all 3 **Reburnishes** and consists of 35 snubs. The Partial Failure Test procedure requires that the remaining portions of the service
brake system stop the vehicle from 60 mph when one of the subsystems is rendered inoperable. The required stopping distances are longer than those for the Effectiveness Tests and are also dependant on vehicle type/size. The Failed ABS test is the same as the Partial Failure Test with the ABS rendered inoperable. The Inoperative Power Assist Test procedures are dependant on the type of power assist and the discretion of the manufacturer. The manufacturer can select from up to 3 choices of test procedures, All of the possible selections require minimum stopping distances from 60 mph with the power assist inoperable. The Fade and Recovery stop or snub procedure is dependent on the vehicle GVWR. The fade portion of the procedure consists of a series of stops or snubs at a specified deceleration rate and initial brake temperature range. The time between stops or snubs is also specified. The vehicle is then driven for a specified distance and speed before the recovery portion starts. The recover portion of the procedure consists of a series of stops or snubs at a specified deceleration rate. The vehicle is driven for a specified distance between stops or snubs. The maximum control force is recorded for each snub. The Water Recovery procedure is also dependent on the vehicle GVWR. The vehicle is driven through a water trough with a water depth of 6 inches for a specified period of time. A series of stops or snubs is performed at specified deceleration rates. The control force must fall within specified minimum and maximum limits. Spike stops are required for vehicles with a GVWR less than 10,000 lbs. None of the vehicles in this study fell into this category. This research is concerned with the addition of Stability and Control (Braking-in-a-Curve) tests to FMVSS No. 105. The Braking-in-a-Curve procedure consists of determining a maximum drive through speed (up to 40 mph) on a 500 foot radius, low coefficient of friction surface and then performing braking tests at initial speeds equivalent to 75 percent of the maximum drive-through speed. The driver should be able to maintain control of the vehicle (i.e. stay in the prescribed curve lane) while negotiating the curve. This test procedure is outlined in more detail in Section 7.2. #### 2.2 - FMVSS No. 121 The FMVSS No. 121 test procedure consists of a Burnish, Braking-in-a-Curve tests (Stability and Control tests) at GVWR and at Lightly Loaded Vehicle Weight (LLVW), Service Brake Stopping Distance at GVWR and LLVW, and Emergency Brake Stopping Distance at GVWR and LLVW. Manual brake adjustment is allowed several times during the course of the procedure. The Burnish consists of 500 snubs between 40 mph and 20 mph. The deceleration rate is 10 ft/sec². After each snub, the vehicle is accelerated back to 40 mph and the speed is maintained for 1 mile past the previous snub at which point the next snub can be performed. Brake lining temperatures and brake application pressures should be recorded every 25th brake snub. Up to three brake adjustments can occur during the burnish and an adjustment is performed after the burnish is complete. The FMVSS No. 121 Braking-in-a-Curve test is the same as that for FMVSS No. 105 described in Sections 2.1 and 7.2. The tests are conducted at GVWR and LLVW. A manual brake adjustment is performed at the end of this test procedure. The Service Braking Stopping Distance tests procedure consists of six stops from 60 mph trying to achieve the shortest stopping distance. The driver is to maintain the vehicle within the prescribed straight lane. The test procedure is performed with the manual controlled driveline retarders in both the on and off positions. To reduce the size of the test matrix, tests were only run with the retarders in the "off" position for this study. Running with the retarders in the "off position is the worst case condition. Wheel lockup provisions are given. The stopping distance requirement is a function of the type of vehicle and loading condition, The Emergency Braking Stopping Distance is basically the same test procedure as that for the Service Braking Stopping Distance test, but with primary and secondary system failures simulated. The primary system failure is simulated by activating a solenoid valve to vent pressure to atmosphere on the primary air reservoir. The stop is initiated within 5 seconds after the low pressure warning is activated. This procedure is performed with the manual controlled driveline retarders in the on and off position. Only "off" position tests were performed in this study. The secondary system failure test is the same as the primary system failure test except the secondary reservoir is vented to atmosphere. The Service Braking and Emergency Braking stopping distance tests are first performed at GVWR. A brake adjustment is then performed before the test procedures are repeated at LLVW. #### 3.0 TEST VEHICLES #### 3.1 - Hydraulic Braked Buses Two school buses, leased from General Motors Corporation and Freightliner/ Thomas Built Buses, were the only hydraulically braked units tested. No hydraulic braked straight trucks were tested as part of this program. Each bus was equipped with an ABS system that meets the equipment requirements of \$5.5.1 of FMVSS No. 105. These requirements are effective March 1,1999, for all hydraulic-braked vehicles with a GVWR greater than 10,000 lbs. One long and one short length bus were selected to determine the effect of wheelbase on braking-in-a-curve performance. The wheelbase measurements were 193 inches for the GMC (unit A) and 252 inches for the Freightliner/Thomas Built (unit B). Vehicle specifications for the buses and the straight trucks (described in Section 3.2) are given in Table 3.1. The brake type, vehicle configuration, wheelbase, Gross Axle Weight Ratings (GAWR), and Gross Vehicle Weight Rating (GVWR) are listed. Since the buses were received as complete vehicles, not just chassis-cabs, no load frame was added. The buses were tested with **all** fuel tanks and fluid reservoirs tilled to normal capacity. VRTC added instrumentation and a data acquisition system (see section 4.0). The test instrumentation and driver added approximately 300 pounds to the unloaded vehicle weight. With the sum of these components, the vehicle was referenced as being in the "lightly loaded", or "empty" configuration. The two buses were received at VRTC with brakes that were in good condition. Table 3.1: Vehicle Specifications for VRTC Brake-In-A-Curve Tests - 1996-1997 | Vehicle | GMC | Freight- | Freight- | Peterbilt | Navistar | Navistar | Navistar | |-----------------|-----------|-----------|----------|-----------|----------|----------|----------| | Manufacturer | | liner | liner | | | | | | Vehicle ID Code | A | В | С | D | Е | F | G | | Vehicle Type | Bus | Bus | Straight | Straight | Straight | Straight | Straight | | | | | Truck | Truck | Truck | Truck | Truck | | Brake Type | Hydraulic | Hydraulic | Air | Air | Air | Air | Air | | Vehicle | 4x2 | 4x2 | 6x4 | 6x4 | 6x4 | 4x2 | 4x2 | | Configuration | | | | | | | | | Wheelbase (in) | 193 | 252 | 180 | 311 | 238 | 152 | 148 | | GAWR front (lb) | 8100 | 7560 | 12000 | 20000 | 15000 | 14600 | 20000 | | GAWR rear (lb) | 19000 | 17940 | 40000 | 40000 | 46000 | 21000 | 30000 | | GVWR total (lb) | 27100 | 25500 | 52000 | 60000 | 61000 | 35600 | 50000 | #### 3.2 - Pneumatic Braked Straight Trucks Five straight trucks were leased from Freightliner, Navistar, and Peterbilt (PACCAR) as bare chassis-cabs supplied without bodies or equipment that would normally be installed by a second-stage manufacturer. Each had pneumatically operated brakes, and were equipped with ABS systems. Various length trucks were selected to determine the effect of wheelbase on braking-in-a-curve performance. The three longer trucks had a 6x4 wheel configuration. The two shorter trucks had a 4x2 wheel configuration. The wheelbase (WB) measurements were: Freightliner 6x4 (unit C) 180 inch WB, Peterbilt 6x4 (unit D) 3 11 inch WB, Navistar 6x4 (unit E) 238 inch WB, Navistar (unit F) 152 inch WB, and Navistar (unit G) 148 inch WB (see Table 3.1 for vehicle specifications). Load frames were installed on each of the straight trucks to simulate the unloaded condition of completed vehicles (see section 6.0). Fluid levels and data acquisition weights were similar to those described for buses in the previous section. The brakes were all in good condition. A burnish was performed on each unit in the fully laden GVWR condition prior to performing the vehicle stability brake-in-a-curve tests. Since only the brake-in-a-curve tests for the Navistar units "F" & "G" were performed by VRTC, the conditioning burnish procedures were performed by Navistar prior to their arrival. Navistar also ran and provided the data for the other FMVSS No. 121 tests for these vehicles. These tests were performed at the same test site, but not under VRTC observation. #### 4.0 INSTRUMENTATION Six of the seven test vehicles incorporated similar VRTC data acquisition systems. The seventh unit, the 4x2 Navistar truck (unit F), was instrumented by Navistar. The data acquisition system's main function was to log key physical parameters of the driver input, vehicle response, and braking performance, all with respect to elapsed time. #### 4.1 - Data Acquisition Overview The major components of the VRTC data systems were: a laptop PC with two AT-type expansion slots, an internally mounted digitizer, a signal conditioning breakout box, various cables, parameter measurement transducers, and three monitors for the driver, including a Labeco Performance Monitor, a Fluke Thermocouple Monitor, and a GSE Pedal Force Monitor. The laptop PC controlled the acquisition of the data. The system functions were manipulated through "DACS" data acquisition routines, written at VRTC. Inside the laptop was an Analog Devices RTI-815,12-bit digitizer. The digitizer was configured to acquire analog data from up to
twenty channels. Data were collected at a digitizing rate of 20 samples per second, on each channel, for the buses and the first two straight trucks. After reviewing this data, it was determined that finer time precision was necessary, so the sample rate was raised to 100 samples per second. A twenty-six conductor ribbon cable connected the digitizer to the signal conditioning breakout box. The breakout box contained several types of subsystems. The first subsystem comprised the power switching and voltage regulation controls for the various components of the data system. These ensured that all components of the entire data acquisition system were referenced to the same groundplane. The second subsystem contained the signal conditioners. An Analog Devices 3B01,16-channel backplane, formed the base for the signal conditioners. Analog Devices 3B18 amplifiers were chosen as cost-effective signal conditioners. Each 3B18 provided three essential functions: 1) a stable 10 volts DC excitation for the transducers requiring a power source, 2) adjustable gain, with a range from xl to x1000, and 3) an adjustable frequency, 2-pole low pass, Butterworth filter, which was set for 10 Hz on the early bus tests, and raised to 18 Hz for the later straight truck tests running with higher sample rates. Brake temperature signals were conditioned through Analog Devices 3B47 amplifiers. The 3B47's provided cold junction compensation, linearization, and magnetic isolation for the readings of the individual brake temperatures that were measured at the brake linings. The final section of the breakout box contained an array of suitable bulkhead connectors, which accommodated the numerous cables from the various transducers and thermocouples. For Unit E, the 6x4 Navistar 238-in wheelbase truck, for which a full 20 channels of data were recorded, an additional eight channel backplane and bus adapter cables were added to the breakout box. #### 4.2 - Transducer Information Transducers were used to measure vehicle speed, brake line pressures, control pressure (on pneumatic braked vehicles) and pedal force (on hydraulic braked vehicles), deceleration, stopping distance, and brake temperatures, during the testing of each vehicle. A complete list of the data channels measured for each vehicle is given in Table 4.1. Table 4.1: Data Acquisition Channel List for FMVSS No. 105 & FMVSS No. 121 VRTC Brake-In-A-Curve Tests - 1996-1997 | Veh. ID Code | A | В | С | D | Е | F | G | | |----------------------------|--------------|---|-------------------|--|---------------|---------------|---------------|------------------------------| | Manufacturer | GMC | Freight
-liner | Freight
-liner | Peter-
bilt | Navi-
star | Navi-
star | Navi-
star | | | Type | BUS | BUS | 6x4 | 6x4 | 6x4 | 4x2 | 4x2 | | | Wheelbase (in) | 193 | 252 | 180 | 311 | 238 | 152 | 148 | | | Number of Data
Channels | 13 | 13 | 10 | 10 | 20 | NA | 13 | | | Sample Rate (Hz) | 25/20 * | 20 | 20 | 20 | 100 | NA | 100 | | | Channel Name | | | | <u> </u> | | <u> </u> | - | Description | | EVENT | X | X | X | X | X | NA | X | brake event | | VHSPD | X | X | X | X | X | NA | X | vehicle speed | | DECEL | X | X | X | X | X | NA | X | deceleration | | PDFRCE | X | Х | 1 | | | NA | <u> </u> | pedal force (105 only) | | PDTRVL | X | X | 1 | Ţ | | NA | <u> </u> | pedal travel (105 only) | | CTLPRS | | | X | X | X | NA | X | control pressure (121) | | 1CHPS | | | 1 | | X | NA | <u> </u> | LF brake pressure (121 only) | | 2CHPS | + | | | | X | NA | X | RF brake pressure (121 only) | | 3CHPS | | | 1 | | X | NA | X | LR brake pressure (121 only) | | 4CHPS | | | | | X | NA | X | RR brake pressure (121 only) | | IWHSPD | X | X | X | X | X | NA | $\int x$ | , left wheel speed-axle l | | 2WHSPD | X | x | x | I x | I) x | NA | X | right_wheel_speed-axle | | 3WHSPD | X | X | X | X | X | Ŋ | 1 X | eft_wheel_weed-axle_2 | | 4WHSPD | X | X | X | X | X | NA | X | right wheel speed-axle 2 | | 5WHSPD | | | X | I x | Ix | ł | I. | , left wheel speed-axle 3 | | 6WHSPD | | | X | X | X | | \pm | right wheel speed-axle 3 | | 1TEMP | X | X | | | I X | NA NA | 1 | brake temperature-axle1L | | 2TEMP | X | X | | İ | X | NA | | brake temperature-axle l R | | 3ТЕМР | X | X | | ţ | X | NA | i | brake temperature-axte2L | | 4TEMP | X | X | | Ī | X | NA | , | brake temperature-axle2R | | 5TAWb | 1 | 1 | | ļ | l x | İ | - | brake temperature-axle3L | | - 6TEMP | İ | 1 | ī. | <u> </u> | X | | 1 | brake temperature-axle3R | | TEST | 1 | | | ĺ | | | X | second event spare channel | #### Notes: - 1) 25/20 * = 25 Hz for the GVWR test, 20 Hz for the empty (lightly loaded) test. - 2) Vehicle F was instrumented by Navistar and a channel list is Not Available (NA). - 3) Vehicles A through E were instrumented and tested to the appropriate FMVSS standard by VRTC. - 4) Vehicles F and G were only tested for the brake-in-a-curve sequence at VRTC. A Labeco TrackTest 5th Wheel assembly was attached to the rear or underside frame of the truck. The 5th wheel was used to obtain a free-rolling, independent vehicle velocity at the lateral centerline of the vehicle. The Labeco 5th Wheel was calibrated daily on the precisely measured skid pad lane #6 "1000-foot cal pad". The air pressure in the wheel was adjusted until the Labeco display indicated a concurrent reading of 1000 +/- 2 feet. Coupled to the fifth wheel was a TTL pulse encoder. The fifth wheel pulse output signal was fed to the Labeco Performance Monitor. The timing of the Labeco Performance monitor was verified daily by reading an internal 2048 Hz calibration standard with a clock test value of "62.0 - 62.1 mph". Variance from this reading would require that the unit be removed from service for factory re-calibration. Before each test run, the driver would reset this unit, which in sequence self-armed. The tail light circuit was tapped, whereupon applying force to the brake pedal energized the vehicle brake lamp circuit, triggering the Labeco. An alternate method of taping a contact closure ribbon switch to the brake pedal to trigger the Labeco was also used. After each brake test, the read-out retained the display, indicating the distance the vehicle covered during the stop, starting at the trigger signal, and ending within 0.6 mph of the complete cessation of forward vehicle motion. It was noted that the total distance traveled in slowing from <0.6 mph to zero was less than the accuracy of the fifth wheel, so no effort was made to account for the negligible difference. This early dropout also prevented the system from continuing to increment distance falsely as the vehicle pitched back and forth at the end of the stop. A tachometer-generator device mounted on the same 5th wheel unit measured the rotational velocity of the 5th wheel, producing 7.0 volts of output for every 1000 revolutions per minute. The voltage sensitivity of this independent vehicle velocity measuring system calculated to 16.38 ft/sec/volt (11.168 mph per volt). Strain Gage type pressure transducers were plumbed into the pneumatic supply lines that led to each wheel, or to the two port valve supplying the brakes on two wheels simultaneously. An additional pressure transducer was installed in the control line to measure the input effort for the FMVSS No. 121 pneumatic systems. The transducers selected had a range of 0-200 psi. On FMVSS No. 105 hydraulic systems, a GSE brake pedal load cell was mounted on the brake pedal to log driver input effort. The transducers selected for the buses were capable of measuring a force range of 0-200 pounds. Additionally, the pedal travel was monitored, as this test series was searching for new methods of determining driver braking input. A string-pot (a potentiometric displacement measuring device with a retractable steel cable) was attached to the backside of the brake pedal and whose base was fastened to the floor of the bus. The string-pot was set to give a relative percent of total pedal travel for an input force of 150 pounds. While these string-pot systems were used for both of the hydraulically braked buses, their data provided very limited information as the total distance varied with vehicle operating conditions, invalidating their calibration. A Setra #141 B accelerometer was mounted parallel to the longitudinal axis of the truck, near the vehicle CG (center of gravity), to measure the deceleration of the vehicle during each braking maneuver. The accelerometer measuring range was scaled to +/- 1 G. For both of the FMVSS No. 105 buses, J-type plug thermocouples were installed in the brake pads as described in section S6.11 of the standard. For Unit E, the 6x4 Navistar 238-inch wheelbase truck with pneumatic brakes, J-type plug thermocouples were already installed when the vehicle arrived at VRTC. Suitable low resistance extension cables connected each of the thermocouples to the data system. The temperature range capability was 0 to 1000 degrees F. #### 4.3 - Driver Feedback Devices For the speed and pressure subsystems described in Section 4.2, separate readouts provided feedback to the driver. The Labeco #625 Performance Monitor provided vehicle speed updates to the driver every 100 mS. At the end of each stop, the driver tabulated the stopping distance readings from the Labeco. For hydraulic brakes, a GSE Pedal Force Monitor provided realtime analog dial indications of the applied pedal force. For pneumatic brakes, the input parameter was indicated by an analog dial pressure gauge installed in the control line from the treadle valve. In accordance with the test specifications, the driver adjusted his pedal effort with the feedback from these visual aids. An additional driver
readout was included to monitor the thermocouple temperatures of the brake pads. A ten channel, Fluke #2166A Digital Thermometer was connected to the individual thermocouples through "tee" connectors at the data system. The channel selector was switched between the active channels, and then maintained, on the channel displaying the highest reading, for the next test run. #### 4.4 -Weight of Instrumentation The weight of the data acquisition system did not significantly affect the performance of the test vehicles, since the equipment was light (compared to the weight of the test vehicles) and mounted so that its center of gravity was located near the center of gravity of each vehicle. Typical weights for the various components are listed in Table 4.2. Table 4.2: Weight of Typical VRTC Instrumentation Components for FMVSS No. 105 & FMVSS No. 121 Brake-In-A-Curve Tests | Instruments Installed: | Weight of Typical Instrumentation | |--|-----------------------------------| | | Components: (lbs) | | Ruggedized PC Computer (Laversab) | 19.6 | | 16-ch signal conditioning breakout box | 18.1 | | GSE Pedal Force Display with transducer | 4.3 | | Fluke 10-ch digital thermometer | 4.1 | | Setra Accelerometer with mounting platform | 1.4 | | Wheel Tachometer with mounting hardware | 2.3 each (use 4 or 6 per truck) | | Labeco 625 Performance Monitor | 6.1 | | Labeco 5 th wheel. frame, encoder, & tachometer | 35.0 | | Miscellaneous Cables and Connectors | 7.0 | | | | | Total Weight of typical 6x4 Truck Instrumentation | 109.4 | Note: Total instrumentation weight for a typical 4x2 truck would be approximately 5 pounds less. #### 5.0 BRAKING-IN-A-CURVE TEST AREA The braking-in-a-curve tests were conducted on a low coefficient of friction surface on the Transportation Research Center proving grounds in East Liberty, Ohio. The test area was located inside the fifty acre asphalt rectangle, the Vehicle Dynamics Area (VDA), which provided a safety run-off area if the test vehicle needed to abort a braking maneuver. The coefficient of friction for most of the VDA was a relatively high 0.9. This provided excellent traction for accelerating to test speed. The layout of the VDA provides a relatively quick means of repeating test cycles with minimal milage accumulation on the tires and brakes. Located on the southern section of the VDA was the Braking-In-A-Curve area. This section of the VDA was coated with Jennite (a driveway sealer) and wetted with water to provide the reduced (0.5 nominal peak) coefficient of friction surface for the brake tests. A curved, 12-foot-wide lane was laid out (12 feet between the inside edges of painted eight-inch squares), with the center of the lane having a 500-foot radius of curvature, and an arc length of over 500-feet. The squares were painted on radials corresponding to every 20 foot of centerline arc length. Traffic cones were placed on each painted square, maintaining twelve feet of spacing between the base of the sides facing the lane. This provided a clear lane reference without solidly painting a lane line that would cause a variance in the surface's coefficient of friction. For drainage purposes, the surface had a cross slope of one percent, at the mid-point of the curve, and approximately zero longitudinal slope. The effect of the cross slope was such that the test condition was considered to be worst case, since the outside of the curve was on the downslope side. The peak **coefficient** of friction (PFC) of the surface during the time of the testing ranged from 0.34 to 0.39. The effect of the lower PFC, compared to the 0.5 PFC as specified in FMVSS No. 121, was also considered a worst-case test condition. An excerpt from the TRC periodic report of "Monitored Test Surfaces" is given in Table 5.1. A partial history of the surface friction coefficients for 1996 - 1997 is shown. It includes coefficients for the wet Jennite pad (#8) used for vehicle stability brake-in-a-curve tests and for the dry concrete skid pad (#3) used to run high speed braking maneuvers for the other test procedures (see Section 7.0). Table 5.1: "Monitored Test Surfaces" Information for 1996-1997 | Location | Skid Pad-Lane 3 | VDA | |------------------------------|--|---------------------------| | Pad# | 3 | 8 | | Pavement | Polished Concrete | Jennite over Asphalt | | Type of Tests Run on Surface | High Speed Braking Maneuvers | Brake-In-A-Curve
Tests | | Condition as Tested | Dry | Wet | | Peak/Slide
Coefficients | Peak Brake Coefficient / Slide
Number Coefficient | Peak Brake Coefficient | | Nominal Coefficient #'s | 90 / 75 | 30 | | Date | Peak mu/Slide mn | Peak mu | | 06/28/96 | 87 / 80 | 36 | | 08/21/96 | 90 / 78 | 37 | | 10/28/96 | 95 / 78 | 34 | | 12/04/96 | 96 / 79 | 38 | | 01/07/97 | 94 / 81 | 37 | | 04/01/97 | 96 / 81 | 39 | | 05/20/97 | 87 / 81 | 37 | Peak Brake Coefficient measured per ASTM E1337 with an ASTM E1336 standard tire. Slide Number Coefficient measured per ASTM E274 with an ASTM E501 standard tire. To obtain the reduced coefficient of friction in the braking area, water was sprinkled onto the Jennite just before each test run. A suitable truck was fitted with a 5000 gallon water tank. Gravity fed the water from the 72-inch, inside height, oval tank to a 208-inch wide horizontal spray bar. The bottom of the water tank was 48 inches above the ground. The bottom of the spray bar was 27 inches above the ground. The 2-1/2-inch inside diameter spray bar sprinkled from 196 holes, each 3/8-inch diameter, spaced 1-inch longitudinally over the length of the bar, and alternately bored 28.6 degrees in front of, and 28.6 degrees following, vertical downward. When this water truck was driven across the Jennite area at IO-15 miles per hour, the water would bead up to approximately 1/8-inch thick, providing a wetness lasting one or two minutes until the test vehicle was driven across it. If the test vehicle was delayed in making a test pass, the surface was re-wetted. To provide an additional margin of safety, the water truck made one or two passes over the surface on each side of the test lane. This extended the area of low coefficient surface and created a safe run-out-of-lane option without side-tripping the vehicle onto a higher coefficient surface. #### 6.0 VEHICLE LOADING AND LOAD FRAMES #### **6.1 - Bus Loading Conditions** The two school buses supplied by General Motors Corporation and Freightliner/Thomas Built Buses were received as complete vehicles so no load frame or ballast was added for testing in the unloaded condition. The buses were tested with all fuel tanks and fluid reservoirs filled to normal capacity. The test instrumentation and driver added approximately 300 pounds to the unloaded vehicle weight. The loaded tests on the two school buses were conducted by placing sand bags on the floor and seats of the bus such that the total vehicle weight was equal to the GVWR, with the axle loads in proportion to the GAWRs. #### 6.2 - Straight Truck Loading Conditions To simulate the unloaded condition of completed vehicles, a load frame was installed on the chassis cab straight trucks for the performance tests conducted in the unloaded condition. Two trucks, the Freightliner 6x4 (unit C) and the Navistar 6x4 (unit E), were fitted with a 2600 pound load frame built by VRTC. The long wheelbase Peterbilt (unit D) was fined with two VRTC load frames, placed end to end. Navistar supplied the load frame with a weight of approximately 3,560 pounds, which was used for both the 152" (unit F) and 148" (unit G) wheelbase 4x2 trucks. Each of the load frames used to secure ballast to the vehicles for testing in the loaded condition included an integral roll bar to protect the test driver in the event of rollover during the tests. To achieve a fully laden condition for the straight trucks, ballast was added (See Table 6.1). This condition was accomplished by adding steel and/or concrete weights to the load frame such that the total weight of the vehicle was equal to the GVWR (gross vehicle weight rating) and the axle loads were in proportion with the front and rear GAWRs (gross axle weight ratings). For two of the straight trucks (units C and G), the load was situated so the center of gravity (CG) of the ballast was approximately 32 inches above the top of the frame rails of the truck. TP121V-03 "Laboratory Test Procedures for FMVSS No. 121," specifies a twenty-four inch maximum load-CG height above the fifth wheel on a tractor-trailer combination. This was modified for' straight trucks by allowing eight inches for the equivalent height of the fifth wheel above the frame rail. This resulted in a total of 32 inches above the top of the frame rail. The CG height of the load frame was included in the calculated CG height of the truck in the lightly loaded or "Empty" condition. For two other straight trucks (units E and F), the tests were conducted with the ballast elevated to approximately 50 inches above the truck frame rails, which was near the maximum height specified by the manufacturer in their final-stage manufacturer's guidelines. These two elevated ballast CG tests were conducted to give some indication of the effect of center of gravity height on braking performance in the braking-in-a-curve test. The fifth straight truck (unit D) was tested with the ballast CG at twenty 'inches above the truck frame rails. Here, the truck frame was quite high above the ground, due to the two liftable axle mountings, and installing the two load frames raised the empty CG height even more. It was determined that the ballast raised the combined CG to the maximum height that was felt to be safe for this test. Any additional elevation might have caused a roll stability problem. VRTC load frame no. 1, used on units C, D, and E, was fabricated from steel angle. tubing, and box beams. The dimensions were 13 feet 4
inches long, 6 feet 6 inches high. and 7 feet 11.5 inches wide. The longitudinal CG was 59.3 inches behind the front of the roll bar. The vertical CG was 17.1 inches above the surface that rests on the truck frame rails. The second load frame installed on the Peterbilt (unit D) was of similar construction and dimensions. Table 6.1: Ballast CG Height Calculations for FMVSS No. 121 Brake-In-A-Curve Straight Truck Tests | Manufacturer | Freightliner | Peterbilt | Navistar | Navistar | Navistar | |--|-------------------------------|-------------------------------|---------------------------------|-----------------------------------|-----------------------------------| | Vehicle ID Code | С | D | E | F | G | | Axle Configuration | 6x4 | 6x4 | 6x4 | 4x2 | 4x2 | | GVWR Configuration (lb) | 52000 | 60000 | 61000 | 35600 | 50000 | | Wheelbase | 1 80 in | 311 in | 23 8 in | 152 in | 148 in | | Bare chassis-cab CG height (CC height above ground, without the load frame installed) | 40 in factory estimated | 41 in
factory
estimated | estimate
not available | estimate
not available | estimate
not available | | Load Frame weight (lb) | 2602 | 5204 * | 2602 | 3560 | 3560 | | Load Frame vertical CG height above truck frame rails | 17.1 in | 17.1 in | 17.1 in | height not
available | height not
available | | Weight Lightly Loaded includes load frame (lb) | 17960 | 32600 | 21370 | 15760 | 18700 | | Lightly Loaded vehicle CG
height (CC height above
ground after installing the
load frame) | 42.5 in VRTC estimated | 43.7 in VRTC estimated | 38 in
Navistar
calculated | 35.3 in
Navistar
calculated | 38.8 in
Navistar
calculated | | Ballast Weight (lb) | 34230 | 27440 | 39390 | 19820 | 30320 | | Ballast CG height above truck frame rails | 30.5 in | 20.5 in | 51.1 in | 48.3 in | 34.6 in | | Combined Load Frame and
Ballast Weight (lb) | 36832 | 32644 | 41992 | 23380 | 33880 | | Combined Load Frame and
Ballast CG height
above truck frame rails | 29.6 in | 20.0 in | 49.0 in | height not
available | height not
available | | Weight Laden (lb) | 52190 | 60040 | 60760 | 35580 | 49020 | | Laden Vehicle estimated vertical CG height above ground | height not
available
** | height not
available
** | 76 in
Navistar
calculated | 62.2 in
Navistar
calculated | 60.2 in
Navistar
calculated | ^{5204 *} = the Peterbilt truck (unit D) had two VRTC load frames installed. ^{** =} Laden CG height not available due to a lack of information on suspension compression under load. #### 7.0 TEST PROCEDURE AND TEST SEQUENCE #### 7.1 - General Test Procedures and Test Sequence Prior to testing, for safety reasons, a suitable load frame with an integral safety rollbar was installed on the chassis frame vehicles (see section 6.0 - Vehicle Loading). Instrumentation was installed (see section 4.0 - Instrumentation). Before the vehicle was weighed, and again before each major step in the test sequence, all fuel tanks and fluid reservoirs were filled to normal capacity. This maximized test repeatability. The driver was briefed before each test sequence. The sequence of tests performed under each standard (FMVSS No. 105 and FMVSS No. 121) are listed on the following page. One deviation from the standard test procedures was that after the Initial Burnish, all of the vehicles were tested for brake effectiveness at slow speed on a Hans Herman BM Roller Dynamometer (see Appendix No. 8 for the Roller Dynamometer description and brake force plots). FMVSS No. 105 also specifies a First Effectiveness test that was not performed for this study because the vehicles tested to this standard were received with the Initial Burnish already performed. A brief explanation for the various test procedures is given in Section 2.0. Detailed procedures for each test are contained in the respective FMVSS. A detailed explanation of the braking-in-acurve tests are contained in the next section. #### FMVSS No. 105 - 4x2 School Bus - Test Sequence - 1. Initial Burnish - 2. Second Effectiveness - 3. *Proposed* Stability and Control, Brake-in-a-curve Loaded at GVWR - 4. First Reburnish - 5. Third Effectiveness - 6. Proposed Stability and Control, Brake-in-a-curve Empty at LLVW - 7. Partial Failures Empty - 8. Partial Failures Loaded - 9. Inoperative Power Assist Loaded - 10. Failed ABS Loaded - 11. First Fade and Recovery - 12. Second Reburnish - 13. Second Fade and Recovery - 14. Third Reburnish - 15. Water Recovery #### FMVSS NO. 121 - 4x2 and 6x4 Straight Truck - Test Sequence - 1. Burnish - 2. *Proposed* Stability and Control, Brake-in-a-curve Loaded at GVWR - 3. *Proposed* Stability and Control, Brake-in-a-curve Empty at LLVW - 4. Manual Brake Adjustment Allowed - 5. Service brake stopping distance test at GVWR. - 6. Emergency brake stopping distance test for single unit truck only at GVWR. - Primary system failure. - . Secondary system failure. - 7. Manual Brake Adjustment Allowed - 8. Service brake stopping distance test at LLVW. - 9. Emergency brake stopping distance test at LLVW. - Primary system failure. - . Secondary system failure. #### 7.2 - Stability and Control, Braking-In-A-Curve Test Procedure The "braking-in-a-curve tests" (BIC) were conducted by finding the maximum drive-through speed, making four stops at 75 percent of the maximum drive-through speed (minimum required brake-through speed), as is specified for truck tractors, and then also determining the maximum brake-through speed. Maximum drive-through speed is defined as the fastest constant speed that a vehicle can be driven through at least 200 feet of curve arc length without departing the lane on a 500-foot radius curve (see section 5.0 - Braking-In-A-Curve Test Area) with a 0.5 peak friction coefficient surface, with the driver making steering corrections as necessary. Maximum brake-through speed is defined as the fastest speed at which a full brake application can be made while the vehicle is in the curve without the vehicle departing the lane, with the driver making steering corrections as necessary. Determination of the maximum brake-through speed provided data on the potential margin of compliance or non-compliance for the test vehicles. In conducting the **tests**, the driver was instructed to begin the test in the center of the lane and to steer as **necessary** to keep the vehicle within the lane. If any cones were hit, the vehicle was considered to have gone out of the lane. The maximum drive-through speed was determined by making passes through the lane at a constant speed and increasing or decreasing the speed slightly on each successive pass to determine the maximum speed at which the vehicle would remain within the **lane**. Once this speed was determined, two or three additional passes were made to verify that the speed determined was the maximum speed at which the vehicle would remain in the lane. Next, four stops were made at the minimum required brake-through speed (75 percent maximum drive-through). The vehicle must stay within the lane on at least three of four consecutive tests. If a unit failed this requirement, the speed was lowered in one mph increments to a speed where three of the four stops resulted with the vehicle staying in the lane. Finally, the maximum brake-through speed was determined by making successive stops increasing the speed appropriately to find the maximum speed at which the vehicle would remain in the lane. For these stops, the brake was applied as rapidly as possible to a full pressure application or full travel condition and held until the end of the stop. As currently specified in FMVSS No. 121 for truck-tractors, the required minimum brake-through speed to be used in the braking-in-a-curve test is either 75 percent of the drive-through speed or 30 mph. whichever is lower. Calculated from these requirements, in order for a 30 mph brake-through speed to be used, the drive-through speed would have to be 40 mph or greater. The straight trucks and buses tested in this program had maximum drive-through speed ranging between 32 and 37 mph, therefore, the 75 percent of drive-through speed, rather than the 30 mph speed, applied to each of these vehicles. #### 8.0 TEST RESULTS #### 8.1 - Braking-in-a-Curve Test Results The Braking-in-a-Curve test results are summarized in Table 8.1. The vehicle identification code (A-G for vehicle, 1 or 2 for loading condition), vehicle manufacturer, type of vehicle, wheelbase, loading condition, drive-through speed, required minimum brake-through speed, maximum brake-through speed, and maximum brake-through/maximum drive-through ratio are tabulated. Six of the seven vehicles were able to achieve a maximum brake-through speed that was well above the proposed 75 percent minimum requirement. The first six tabulated vehicles had at least an 88 percent ratio for both empty and fully loaded conditions. The seventh vehicle, the Navistar 4x2 - 148 inch wheelbase, met the minimum requirement for the loaded condition (78 percent), but did not pass the empty condition (61 percent). It should be noted that this vehicle had a drive axle with a gross axle weight rating of 30,000 pounds, which was greater than the 29,000 pound maximum GAWR specified in FMVSS No. 121 section S3(b), and therefore is not required to pass FMVSS No. 121 test procedures. However, vehicle manufacturers using axles with the higher weight ratings can opt to certify to this standard. The maximum drive-through and maximum brake-through speeds are plotted for each vehicle in Figure 8.1. The maximum brake-through/drive-through ratio is plotted in Figure 8.2. Both of these figures show that Vehicles A-F have brake-through/drive-through ratios that are well above the 75 percent minimum requirement. As stated previously, Vehicle G (Navistar 148 inch wheelbase) met the minimum requirement for the
loaded condition, but did not meet it for the unloaded condition. For safety reasons, the maximum test speed permitted by the test procedure was 40 mph. None of the vehicles were able to achieve this high a value. When determining the maximum drive-through speed, the test vehicle front end tended to **plough** at the limit, departing the lane on the outside of the curve. When determining the maximum brake-through speed, the rear end of the test vehicle would tend to "walk out" at the limit, also departing the lane on the outside of the curve. TABLE 8.1 VRTC Brake-In-A-Curve 1rest Results for FMVSS No. 105 and FMVSS No. 121-1996-1997 | Vehicle
ID Code | Manufacturer | Туре | Wheel-
base
(in) | Test
Condition | Max
Drive-
Through
(mph) | Required
Minimum
Brake-
Through
(mph) | Max
Brake-
Through
(mph) | Max Brake-
Through/
Max Drive-
Through %
(75% Min.) | |--------------------|--------------|-------|------------------------|-------------------|-----------------------------------|---|-----------------------------------|---| | A1 | GMC | Bus | 193 | loaded | 34 | 26 | 34 | 100 | | A2 | GMC | Bus | 193 | empty | 34 | 26 | 34 | 100 | | B1 | Freightliner | Bus | 252 | loaded | 35 | 26 | 34 | 97 | | B2 | Freightliner | Bus | 252 | empty | 37 | 28 | 34 | 92 | | C1 | Freightliner | 6 x 4 | 180 | loaded | 34 | 26 | 34 | 100 | | C2 | Freightliner | 6 x 4 | 180 | empty | 33 | 25 | 32 | 97 | | D1 | Peterbilt | 6 x 4 | 311 | loaded | 32 | 24 | 30 | 94 | | D2 | Peterbilt | 6 x 4 | 311 | empty | 32 | 24 | 31 | 97 | | El | Navistar | 6 x 4 | 238 | loaded | 34 | 26 | 30 | 88 | | E2 | Navistar | 6 x 4 | 238 | empty | 33 | 25 | 30 | 91 | | F1 | Navistar | 4 x 2 | 152 | loaded | 36 | 27 | 34 | 94 | | F2 | Navistar | 4 x 2 | 152 | empty | 36 | 27 | 34 | 94 | | G1* | Navistar | 4 x 2 | 148 | loaded | 36 | 27 . | 28 | 78 | | G2* | Navistar | 4 x 2 | 148 | empty | 36 | 27 | 22 | 61 | Notes: Required Minimum Brake-Through speeds listed are 75 percent of the Maximum Drive-Through speed. Vehicle ID Code suffix "1" indicates the vehicle tested in the GVWR loaded condition. Vehicle ID Code suffix "2" indicates the vehicle tested in the empty condition. The "*" for vehicle "G" indicates that this unit has a rear axle that exceeds the 29,000 pound maximum axle rating to which FMVSS No. 121 applies. ## Figure 8.1: Brake-in-a-Curve Vehicle Maneuver Speeds ^{*} indicates that this unit has a rear axle that exceeds the 29,000 pound maximum axle rating to which FMVSS No. 121 applies # Figure 8.2: Brake-in-a-Curve ^{*} indicates that this unit has a rear axle that exceeds the 29,000 pound maximum axle rating to which FMVSS No. 121 applies The proposed FMVSS additions for Braking-in-a-Curve testing require that a minimum brake-through speed equal to 75 percent of the maximum drive-through speed, or 30 mph, whichever is less, be repeated four times. The vehicle must be able to maintain the lane for three of the four consecutive test runs. The six vehicles that passed both the empty and loaded conditions remained in the lane during all four stops at the required minimum brake-through speed and all had a significant margin of compliance as noted by Brake-Through/Drive-Through percentages being higher than 75 percent. The seventh vehicle (unit G) stayed in the lane in all four of the stops at the required minimum brake-through speed in the loaded condition. For a few of the test vehicles, the braking-in-a-curve test series was repeated to determine if the drive-through and brake-through speeds obtained could be reproduced. The speeds were reproducible to within a half mile per hour, for each tested load condition. Therefore, the **braking-**in-a-curve scenario produced repeatable results. For the two trucks tested at GVWR, with the ballast center-of-gravity raised to nearly 50 inches above the frame rails of the truck (Vehicles E and F), comparison tests showed that the increased height did not have an appreciable effect on the performance of the vehicle (i.e. similar brake-through and drive-through speeds were achieved), compared with the lower 32-inch above truck frame rail ballast elevation. However, the test driver did comment that this test condition caused an unsettling feeling during the testing with regard to the vehicle's roll stability. To observers who watched the testing, there were no apparent indications that the vehicles were nearing rollover, such as lifting of an inside tire. No data on these two vehicles are available for the testing conducted at the lower 32-inch height. During the period this program was in the "vehicle test" phase, there was discussion as to adding a requirement to the FMVSS No. 105 braking-in-a-curve test for a pedal force input application time. After the two school buses were tested and returned to their suppliers, a proposed application time was decided upon. It was proposed that a full pedal application of 150 pounds be applied within 0.2 seconds of initial pedal movement. Upon reviewing the data for the buses, there was no pre-trigger time allotted by the DACS data software. and the twenty Hertz sample rate was insufficient to post process adequate timing data. Therefore, it is impossible to determine the application times for these vehicles. The maximum initial pedal force achieved during the stops in this study typically ran in the 60 to 100 pound range. Full ABS cycling did occur at these levels. This change in the proposed ABS braking-in-a-curve test procedure was not made for the testing covered by this report. The reasons for not implementing this change in the proposed test procedure are as follows. The requested application rate would be awkward for the driver to meet. The driver commented that it was very taxing to his abilities to watch his speed, apply a repeatable pedal effort, and negotiate the curve without any of the wheels going out of lane, all while looking ahead at where he was going. The additional driver workload of reading a precise pressure measurement could cause visual overload and reduction in safety during the test, The geometry of the seating position, steering wheel, and brake pedal also contribute to the difficulty of this task. A mechanical brake pedal actuator device to apply the 150 pound in 0.2 second brake force would be required to produce repeatable pedal applications at this high rate. This would increase the equipment needed to perform the test. This application rate is probably higher than necessary since full ABS cycling was achieved at a lower pedal force. In considering "apply times" for three of the pneumatic braked straight trucks, all three surpassed the FMVSS No. 121 required minimum control pressure of 85 psi (at the treadle valve) in less than 0.2 seconds as specified for tractors. The three 6x4 trucks were from Freightliner, Peterbilt, and Navistar. The two 4x2 Navistar straight trucks were not instrumented for this measurement. This application time is repeatable, and easy to measure for the FMVSS No. 121 standard using a simple data acquisition system with a 50 Hertz input filter, 100 Hertz sample rate and a brake pedal touch switch or motion sensor. The 18 Hertz input filter used in this study was acceptable for measuring the transients associated with the initial brake application. The results of testing at VRTC show that the braking-in-a-curve test is practicable, repeatable, and safe to perform for single unit vehicles. #### 8.2 - Summary of Other FMVSS No. 105 Test Results The two school buses had hydraulic brakes and were therefore subject to the other FMVSS No. 105 test procedures. Loaded and empty effectiveness test results (full system) and failed system test results are summarized in Tables 8.2 and 8.3 for the GMC and Freightliner/Thomas school buses. The effectiveness test results are from the Second Effectiveness Test. They are the lowest value from six tests. The failed system test results are the lowest value from four tests. All stopping distances were corrected per SAE J288. The stopping distances for the failed circuit tests were much greater than those for the full system, but were well below the required stopping distance specified by FMVSS No. 105. ABS failure tests resulted in somewhat shorter stopping distances than those for the full system for both buses. This is not surprising. Professional drivers have demonstrated that they can outperform ABS in straight-line braking tests on high coefficient of friction surfaces. The Power Assist failure tests also resulted in somewhat shorter stopping distances. It is not clear at this time why this would be the case. There are at least two possible explanations. If the buses were outfitted with a back up power assist system, it is only required that one system be failed at a time and therefore the stopping distances should not be affected. Another possible explanation is that some power assist systems have a reserve that provide assist for a few more brake applications after the power assist fails. FMVSS No. 105 requires that this reserve be depleted before power assist failure testing, but this might not have occurred during this study. A summary of Fade and Recovery test results for the GMC and Freightliner/Thomas school buses are given in Tables 8.4 and 8.5 respectively. The maximum, average, maximum allowable, and minimum allowable pedal forces are listed. The maximum pedal forces are the highest values for three tests for the baseline, ten tests for heating, and four tests for Recover 1-4. The average pedal forces are the lowest average values for the same tests. Both buses had maximum and average pedal force values that fell between the minimum and maximum allowable pedal forces and therefore pass the requirement. Tables 8.6 and 8.7 contain a summary of Water Recovery tests for the GMC and Freightliner/Thomas school bus
respectively. The maximum, average, maximum allowable, and minimum allowable pedal forces are listed. The maximum pedal forces are the highest values from three tests for the baseline and four tests for the Recover 1-4. The average pedal forces are the lowest average value for the same tests. Both buses had maximum and average pedal force values that fell between the minimum and maximum allowable pedal forces and therefore pass the requirement. TABLE 8.2: Summary of Effectiveness and Failed System Testing Results for GMC School Bus Spring Suspension, Hydraulic Brakes, 193" Wheelbase, GAWR Front 8100, GAWR Rear 19000 | | Loa | ded | Empty | | |--------------------------|--------------------------------------|-------------------------|--------------------------------------|------------------------| | | Measured
Stopping
Distance (A) | Allowed
Maximum (ft) | Measured
Stopping
Distance (A) | Allowed
Maximum (A) | | Full System - stops fro | m indicated speeds | | | | | 30 mph | 61 | 70 | 52 | ı 70 | | 60 mph | 182 | 280 | 162 | 280 | | Failed System - stops fr | om 60 mph | | | | | Circuit 1 | 360 | 613 | 265 | 613 | | Circuit 2 | 360 | 613 | 382 | 613 | | Power Assist | 175 | 613 | NA | NA | | ABS | 165 | 613 | NA | NA | TABLE 8.3: Summary of Effectiveness and Failed System Testing Results for Freightliner / Thomas Built School Bus Spring Suspension, Hydraulic Brakes, 252" Wheelbase, GAWR Front 7560, GAWR Rear 17940 | | Loaded | | Empty | | |--------------------------|---------------------------------|------------------------|--------------------------------|-------------------------| | | Measured Stopping Distance (ft) | Allowed
Maximum (A) | Measured Stopping Distance(ft) | Allowed
Maximum (ft) | | Full System - stops fro | m indicated speeds | | | • | | 30 mph | 63 | 70 | 49 | 70 | | 60 mph | 217 | 280 | 178 | 280 | | Failed System - stops fr | om 60 mph | | | | | Circuit I | 404 | 613 | 401 | 613 | | Circuit 2 | 541 | 613 | 380 | 613 | | Power Assist | 204 | 613 | NA | NA | | ABS | 212 | 613 | NA | NA | TABLE 8.4: Summary of Fade and Recovery Test Results for GMC School Bus | | Maximum Pedal Force (lbs) | Average
Pedal
Force (lbs) | Allowed
Minimum
(lbs) | Allowed
Maximum
(lbs) | |-------------------|---------------------------|---------------------------------|-----------------------------|-----------------------------| | First Fade and Re | covery | | | | | Baseline | 42 | 30 | 10 | 90 | | Heating | 43 | | | 150 | | Recover 1-4 | 41 | 27 | 18 | 150 | | Recover 5 | 39 | 31 | 18 | 50 | | Second Fade and | Recovery | | | | | Baseline | 47 | 35 | 10 | 90 | | Heating | 54 | | | 150 | | Recover 1-4 | 45 | 36 | 21 | 150 | | Recover 5 | 39 | 33 | 21 | 55 | TABLE 8.5: Summary of Fade and Recovery Test Results for Freightliner/Thomas Built School Bus | | Maximum
Pedal
Force (lbs) | Average
Pedal
Force (lbs) | Allowed
Minimum
(lbs) | Allowed
Maximum
(lbs) | |------------------|---------------------------------|---------------------------------|-----------------------------|-----------------------------| | First Fade and R | ecovery | | | | | Baseline | 72 | 49 | 10 | 90 | | Heating | 77 | | | 150 | | Recover 1-4 | 50 | 39 | 29 | 150 | | Recover 5 | 57 | 42 | 29 | 69 | | Second Fade and | Recovery | | | | | Baseline | 66 | 48 | IO | 90 | | Heating | 78 | | | 150 | | Recover 1-4 | 59 | 45 | 29 | 150 | | Recover 5 | 49 | 38 | 29 | 68 | **Table 8.6: Summary of Water Recovery – GMC School Bus** | | Maximum
Pedal
Force (lbs) | Average Pedal Force (lbs) | Allowed
Minimum
(lbs) | Allowed
Maximum
(lbs) | | | | |-----------------|--|---------------------------|-----------------------------|-----------------------------|--|--|--| | WaweateRRecower | W aWeateRRecover | | | | | | | | Baseline | 66 | 57 | IO | l 90 | | | | | Recover 1-4 | 69 | 51 | 34 | 150 | | | | | Recover. 15.1 | I 66 | 60 | 34 | 110 | | | | Table 8.7: Summary of Water Recovery – Freightliner / Thomas Built School Bus | | | Maximum
Pedal
Force (lbs) | Average
Pedal
Force (lbs) | Allowed
Minimum
(lbs) | Allowed
Maximum
(lbs) | |---|--------------|---------------------------------|---------------------------------|-----------------------------|-----------------------------| | W | ater Recover | | | | | | | Baseline | 61 | 49 | IO | 90 | | | Recover 1-4 | 62 | 45 | 29 | 150 | | | Recover 5 | 56 | 45 | 29 | 109 | #### 8.3 - Summary of Other FMVSS No. 121 Test Results The five straight trucks had air brake systems and therefore were subject to the requirements of FMVSS No. 121. Summaries for the Service Brake and Emergency Brake Stopping Distance tests for the five straight trucks are contained in Tables 8.8 through 8.12. Service Brake stopping distances are the lowest values from six tests. The same is true for the failed primary and failed secondary tests. The stopping distances have been corrected per SAE J288. All of the trucks had Service Brake (fully functioning systems) stopping distances that met the requirements of FMVSS No. 121. The Emergency Brake (partially failed systems) stopping distances for the failed primary and secondary reservoirs also met the FMVSS No. 121 requirements. Typically for air-braked vehicles the primary reservoir controls the brakes for the drive axles, while the secondary reservoir controls the brakes for the steer axle. The drive axles also have a spring brake system that primarily acts as parking brakes for the vehicle. Additional valving can be added to allow modulation of the spring brakes if the primary reservoir fails, therefore acting as a back-up system. The steer axles do not have a back-up system. The failed system tests generally resulted in longer stopping distances than those for the full system with a few notable exceptions. The primary reservoir failed system tests for the Freightliner 6x4 (unit C) and for the Navistar 4x2 - 152 inch wheelbase (unit F) straight trucks had similar stopping distances to the full system in the lightly loaded condition. The spring brake system, in conjunction with the steer axle brakes, for these vehicles must have provided similar braking capability to the full system when the vehicles were light loaded. This was not the case when the vehicles were fully loaded. Table 8.8: Summary of Service Brake and Emergency Brake Stopping Distance for Freightliner 6×4 Straight Truck Air Suspension, Air Brakes, 180" Wheelbase, GAWR Front 12000, GAWR Rear 40000 | | Loaded | | Empty | | | | |-----------------------------------|---------------------------------------|----------------------------|---------------------------------------|----------------------------|--|--| | | Measured
Stopping
Distance (ft) | Allowed
Maximum
(ft) | Measured
Stopping
Distance (ft) | Allowed
Maximum
(ft) | | | | Full System - stops fr | Full System - stops from 60 mph | | | | | | | 60 mp | h 285 | 310 | • 229 | 335 | | | | Failed System - stops from 60 mph | | | | | | | | Primary | 464 | 613 | 225 | 613 | | | | Secondary | 336 | 613 | 328 | 613 | | | Table 8.9: Summary of Service Brake and Emergency Brake Stopping Distance for Peterbilt 6×4 Straight Truck Spring Suspension, Air Brakes, 311" Wheelbase, GAWR Front 20000, GAWR Rear 40000 | | Loaded | | Empty | | | | |------------------------|---------------------------------------|----------------------------|---------------------------------------|----------------------------|--|--| | | Measured
Stopping
Distance (ft) | Allowed
Maximum
(ft) | Measured
Stopping
Distance (ft) | Allowed
Maximum
(ft) | | | | Full System - stops fr | om 60 mph | | | | | | | 60 m _l | h 279 | 310 | 218 | 335 | | | | Failed System - stops | Failed System - stops from 60 mph | | | | | | | Primary | 324 | 613 | 247 | 613 | | | | Second | ary 364 | 613 | 219 | 613 | | | Table 8.10: Summary of Service Brake and Emergency Brake Stopping Distance for Navistar 6×4 Straight Truck Spring Suspension, Air Brakes, 238" Wheelbase, GAWR Front 15000, GAWR Rear 46000 | | Load | led | Empty | | | | |-----------------------------------|------------------------------------|------------------------------|---|----------------------------|--|--| | | Measurede d Stopping Distance (ft) | Allowed d
Maximum
(ft) | MMeasuredd
Stopping
Distance (ft) | Allowed
Maximum
(ft) | | | | Full System - stops fr | Full System - stops from 60 mph | | | | | | | 60 mph | 269 | 310 | 190 | 335 | | | | Failed System - stops from 60 mph | | | | | | | | Primary | 359 | 613 | 190 | 613 | | | | Secondary | 325 | 613 | 284 | 613 | | | Table 8.11: Summary of Service Brake and Emergency Brake Stopping Distance for Navistar 4×2 Straight Truck Spring Suspension, Air Brakes, 152" Wheelbase, GAWR Front 14600, GAWR Rear 21000 Summary data provided by Navistar | | | Loaded | | Eı | npty | |---|---------------------------------|-----------------------------------|----------------------------|--|----------------------------| | |
 | Measured Stopping L Distance (ft) | Allowed
Maximum
(ft) | Measured
Stopping
Distance
(ft) | Allowed
Maximum
(ft) | | F | ull System - stops fro | m 60 mph | | | | | | 60 ⁻ mph | 279 | 310 | 203 | 335 | | | Failed System stops from 60 mph | | | | | | | Primary | 422 | 613 | 306 | 613 | | | Secondary | 480 | 613 | 387 | 613 | Table 8.12: Summary of Service Brake and Emergency Brake Stopping Distance for Navistar 4×2 Straight Truck Spring Suspension, Air Brakes, 148" Wheelbase, GAWR Front 20000, GAWR Rear 30000 Summary data provided by Navistar | | Loaded | | Empty | | | | | |-----------------------------------|---------------------------------------|----------------------------|---------------------------------------|----------------------------|--|--|--| | |
Measured
Stopping
Distance (ft) | Allowed
Maximum
(ft) | Measured
Stopping
Distance (ft) | Allowed
Maximum
(ft) | | | | | Full System - stops fr | Full System - stops from 60 mph | | | | | | | | 60 mph | 261 | 310 | 171 | 335 | | | | | Failed System - stops from 60 mph | | | | | | | | | Primary | 382 | 613 | 371 | 613 | | | | | Secondary | 277 | 613 | 317 | 613 | | | | #### 9.0 SUMMARY Testing was conducted in 1996 and 1997, at NHTSA's Vehicle Research and Test Center (VRTC), on two hydraulic-braked buses and five air-braked straight trucks, all equipped with ABS, to determine if the braking-in-a-curve performance test currently required for truck-tractors could also be applied to single-unit vehicles. The vehicles were subjected to the road test requirements in the respective Federal Motor Vehicle Safety Standards (FMVSS), either No. 105 or No. 121, plus the braking-in-a-curve ABS performance tests, which are not currently included in FMVSS Nos. 105 or 121 for straight trucks and buses. The results of testing show that the braking-in-a-curve test is practicable, repeatable, and safe to perform for single unit vehicles. The following list is a summary of pertinent findings and results: - 1. The test results indicate that six out of the seven vehicles tested would comply with the performance requirements currently in effect for tractors of staying in the lane in at least three out of four consecutive stops, when subjected to a full treadle or pedal brake application, at 75 percent of the maximum drive-through speed. In fact, these six vehicles remained in the lane during all four stops at 75 percent of the drive-through speed and all had a significant margin of compliance. - 2. The seventh vehicle, the Navistar 4x2 with a 148 inch wheelbase, met the minimum requirement for the loaded condition (78 percent), but did not pass the empty condition (61 percent). It should be noted that this vehicle had a drive axle with a gross axle weight rating of 30,000 pounds, which was greater than the 29,000 pound maximum specified in FMVSS No. 121 section S3(b), and therefore is not required to pass FMVSS No. 121 test procedures. - 3. The maximum pedal force achieved during the first half second after the brake was applied typically ran in the 60 to 100 pound range. Full ABS cycling did occur at these levels. - 4. In considering "apply times" for the pneumatic braked straight trucks, all the test vehicles that had the appropriate instrumentation surpassed the FMVSS No. 121 required minimum control pressure of 85 psi (at the treadle valve) in less than 0.2 seconds as specified for tractors. This application time is repeatable. It is the authors' judgement that using a simple data acquisition system with a 50 Hertz input filter, 100 Hertz sample rate, and a brake pedal touch switch or motion sensor would be appropriate for collecting this type of data. The 18 Hertz input filter used in this study was minimally acceptable for measuring the transients associated with the initial brake application. - 5. When determining the maximum drive through speed, the test vehicle front end tended to plough-out at the limit, departing the lane on the outside of the curve. When determining the maximum brake-through speed, the rear end of the test vehicle would tend to "walk out" at the limit, also departing the lane on the outside of the curve. - 6. For two of the straight trucks, the tests were conducted with the ballast elevated to approximately 50 inches above the truck frame rails, which was near the maximum height specified by the manufacturer in their final-stage manufacturer's guidelines. These two elevated ballast CG tests were conducted to give some indication of the effect of center of gravity height on braking performance in the braking-in-a-curve test. Comparison tests showed that the increased height did not have an appreciable effect on the performance of these vehicles, compared with the lower 32-inch above truck frame rail ballast elevation. However, the test driver did comment that this test condition caused an unsettling feeling during the testing with regard to the vehicle's roll stability, even though, to observers who watched the testing, there were no apparent indications that the vehicles were nearing rollover, such as lifting of an inside tire. - 7. For a few of the test vehicles, the braking-in-a-curve test series was repeated to determine if the drive-through and brake-through speeds obtained could be reproduced. The speeds were reproducible to within a half mile per hour, for each tested load condition. Therefore, the braking-in-a-curve scenario produced repeatable results. - 8. The two school buses had hydraulic brakes and were therefore subject to the other FMVSS No. 105 test procedures. Loaded and empty effectiveness test results (full system) and failed system test results were well below the required stopping distance specified by FMVSS No. 105. The stopping distances for the failed circuit tests were much greater than those for the full system, but power assist and ABS failures resulted in somewhat shorter stopping distances than those for the full system for both buses. The Fade and Recovery tests resulted in maximum and average pedal force values that fell between the minimum and maximum allowable pedal forces and therefore both buses passed the requirement. Both buses had maximum and average pedal force values for the Water Recovery test that fell between the minimum and maximum allowable pedal forces and therefore passed the requirement. - 9. The five straight trucks had air brake systems and therefore were subject to the requirements of FMVSS No. 121. All of the trucks had Service Brake (fully functioning systems) stopping distances that met the requirements of FMVSS No. 121. The Emergency Brake (partially failed systems) stopping distances for the failed primary and secondary reservoirs also met the FMVSS No. 121 requirements. - 10. This testing has shown that the braking-in-a-curve test is practicable, repeatable, and safe to perform for single unit trucks and buses. ### 10.0 Appendices - Index | 10.1 Appendix - GMC School Bus Test Data (FMVSS 105) | |--| | 10.2 Appendix 2 - Freightliner/Thomas Built School Bus Test Data (FMVSS 105) A2- | | 10.3 Appendix 3 - Freightliner 6x4 Straight Truck Test Data (FMVSS 121) | | 10.4 Appendix 4 - Peterbilt 6x4 Straight Truck Test Data (FMVSS 121) | | 10.5 Appendix 5 - Navistar 6x4 Straight Truck Test Data (FMVSS 121) A5- | | 10.6 Appendix 6 - Navistar 4x2 Straight Truck 152" WB Test Data (FMVSS 121)A6- | | 10.7 Appendix 7 - Navistar 4x2 Straight Truck 148" WB Test Data (FMVSS 121)A7- | | 10.8 Appendix 8 - BM Roller Dynamometer Description and Test Data Plots | | 10.9 Appendix 9 - Plots of Pedal Force, Vehicle Speed, and Deceleration vs. Time | | For the Two Hydraulic Braked School Buses | | 10.10 Appendix 10 - Vehicle Information Sheets and Pictures of Vehicles, | | Components, & Instrumentation. Al 0-1 | Key: GAWR = Gross Axle Weight Rating (for each axle) GVWR = Gross Vehicle Weight Rating (referred to as loaded) LLVW = Lightly Loaded Vehicle Weight (referred to as empty) IBT = Initial Brake Temperature (just before stop was initiated) fpsps = Feet Per Second (deceleration rate) ### **10.1** Appendix 1 ### FMVSS 105 - GMC 4x2 School Bus Test Sequence | <u>Sequence</u> | <u>Test</u> | <u>Page</u> | |-----------------|---------------------------------|----------------| | 1. | Burnish | | | 2. | Second Effectiveness | A1-2A & B | | 3. | Brake-in-a-curve Loaded (@GVWR) | A1-3 | | 4. | First Reburnish | | | 5. | Third Effectiveness | A1-5A & B | | 6. | Brake-in-a-curve Empty (@LLVW) | A1-6 | | 7. | Partial Failures Empty | A1-7A & B | | 8. | Partial Failures Loaded | A1-8A & B | | 9. | Inoperative Power Assist Loaded | A1-9 | | 10. | Failed ABS Loaded | A1II3 | | 11. | First Fade and Recovery | Al-11A, B, & C | | 12. | Second Reburnish | | | 13. | Second Fade and Recovery | A1-13A, B, & C | | 14. | Third Reburnish | | | 15. | Water Recovery | A1-15 | | | | | All 15 steps of this sequence were performed at VRTC. #### FMVSS 105 -SERVICE BRAKE STOPPING TEST | Vehic | le: GMC 4x2 School Bus GVWR LLVW | | |--------|--|-----| | Date: | 8-6-96 Driver: Observer: | _ | | TEST S | SPECIFICATIONS: | | | | • Check Tire Pressure | | | | • 30 mph Service Brake Stops | | | | . IBT 150 to 200 °F | | | | • Clutch Depressed or Transmission in Neutral | | | | . Brakes Can Be Modulated, Brake Force Between 15 and 150 lb | | | | . Vehicle in Center of Lane at Start | | | | . Manually Controlled Retarder. ON | OFF | **30 mph** Service Brake Stops | | | | | | | Bir Service Br | · · · · · · · · · · · · · · · · · · · | | | |--------|---------------------------|-----|-------|------------------|-----|----------------|---------------------------------------|----------------|------------------| | . C4 a | Application
Force (lb) | | Speed | Decel
(fpsps) | | Stop Dist. | Corrected
Stopping
Distance | In 12 ft Lane | Wheel Lock- | | Stop | Max | Avg | (mph) | Peak | Avg | (ft) | per SAE
J299 | III 12 10 Eane | up
Indication | | 1 | 149 | 99 | 30.5 | 22 | 17 | 71.1 | 69 | yes | no | | 2 | 180 | 102 | 30.6 | 24 | 19 | 65.7 | 63 | yes | no | | 3 | 125 | 96 | 30.1 | 23 | 18 | 63.9 | 63 | yes | no | | 4 | 134 | 81 | 30.3 | 22 | 19 | 65.5 | 64 | yes | no | | 5 | 94 | 78 | 30.2 | 22 | 19 | 66.3 | 65 | yes | no | | 6 | 117 | 98 | 30.3 | 24 | 19 | 62.1 | 61 | yes | i
I no | | Ambient Temp.: <u>85</u> | Wind Speed: <u>5-7</u> | Direction: 234 | |--------------------------|------------------------|----------------| | comments | | | | | | | #### FMVSS 105 — SERVICE BRAKE STOPPING TEST | Date: | <u>8-6-96</u> | <u> </u> | | Driv | er: <u>(Lyle</u> | GVWR □ b s e | r v e | r : | | | | | |--------
--|-------------|--------------------|------|------------------|-------------------------|---------------------|---------------------------------------|------------------|--|--|--| | TEST S | SPECIF | ICATIO | NS: | | | | | | | | | | | | | k Tire P | | | | | | | | | | | | | | | ice Brake S | tops | | | | | | | | | | | | 150 to 20 | = | | | _ | | | | | | | | | | • | ssed or Tra | | | utral
Between 15 and | 150 lb | | | | | | | | | | | | | setween 15 and | 130 10 | | | | | | | | Vehicle in Center of Lane at Start Manually Controlled Retarder. ON OFF | | | | | | | | | | | | | | | J | | | N/A_ | / | <u> </u> | | 60 m | ph Service Bra | ike Stops | · · · · · · · · · · · · · · · · · · · | | | | | | Stop | Applicatiom
Force (lb) | | | De | | ļ | Corrected | | ļ | | | | | | | | Speed | (fps | sps) | Stop Dist. | Stopping | In 12 ft I | Wheel Lock- | | | | | | | | (mph) | _ | | (ft) | Distance
per SAE | In 12 ft Lane | up
Indication | | | | | | Max | Avg | | Peak | Avg | | J299 | | maication | | | | | 1 | 141 | 126 | 54.9 | 22 | 18 | 194.5 | 195 | yes | no | | | | | 2 | 140 | 109 | 55.1 | 24 | 20 | 195.4 | 195 | yes | no | | | | | 3 | 135 | 118 | 55.2 | 25 | 21 | 187.5 | 186 | yes | no | | | | | 4 | 142 | 118 | 55.0 | 25 | 21 | 182.0 | 182 | yes | no | | | | | 5 | 148 | 123 | 55.2 | 23 | 19 | 191.5 | 190 | yes | no | | | | | 6 | 190 | 76 | 55.2 | 24 | 20 | 184.7 | 183 | yes | no | | | | | Ambien | t Temp.: | : <u>87</u> | | Wind | Speed: | 3-6 | Direc | ction: 144 | | | | | | | | | | | _ | | | | | | | | | Comme | nts | | | | | | | | | | | | #### FMVSS 105 -STABILITY & CONTROL TEST DATA SHEET | ehicle: | GMC 4x2 | School Bus | | ⊠ GVWR | | | | | |-------------|--|--|---|-------------------|------------|------|-----------------------|--| | ate: | <u>8-7-96</u> | | Driver: | <u>OLyle b</u> s | e r | V | _e r : | | | EST S | SPECIFICA | TIONS: | | | | | | | | Iaximu | Max. Dr. 75% of Braking IBT 150 Clutch I Full Bra Vehicle Manually | Max. Drive-Ti
Runs at 30 m
to 200 °F
Depress or Tra
ke Application
Within Lane at
y Controlled | hrough Speed
uph or 75%
unsmission in
ut Start
Retarder (| DN
I/A_✓ | ough Speed | | OFF | | | stop
NO. | Speed (mph) | Approx. Dist. Out of Lane (ft) | NO.
Markers
Hit | | (| Comm | ents | | | I | 26.0 | 0 | 0 | | | | | | | 2 | 26.0 | 0 | 0 | | | | | | | 3 | 26.0 | 0 | 0 | | | | | | | 4 | 26.0 | 0 | 0 | | | | | | | Ambien | t Temp.: 80 | 6 | Wind | Speed: <u>4-6</u> | | | Direction: <u>258</u> | | | Comme | ents <u>Max I</u> | Brake Through | Speed - 34 | mph | | | | | #### FMVSS 105 — SERVICE BRAKE STOPPING TEST | Vehicle: | GMC 4 | 4x2 Scho | | O | GVWR | D | LLVW | | | | | | |----------|--|--|------------------------|--|---|---------------------|----------------------------|--------|------------|-----------|-------------|------------------| | Date: | 8-8-96 | | | Drive | er: <u>Ayle</u> | b s | e | r v | e | r | : | | | TEST | • Checle • 30 m. IBT le • Clutce . Brake | K Tire P hph Servi 150 to 20 h Depres es Can E | ressure
ice Brake S | tops
nsmission
d, Brake
e at Star | n in Neu
Force E
t
ON
N/A_• | itral
Between 13 | 5 and | 150 lb | _ OFI | 7 | | | | Stop | | cation
e (lb) | Speed | Decel
(fpsps) | | Stop Dist. | Correc
Stoppi
Distar | ng | (n 12 ft I | 2 ft Lane | Wheel Lock- | | | | Max | Avg | (mph) | Peak | Avg | (ft) | - | per SA | Æ | 111 1 | z it Lane | up
Indication | | 1 | 125 | 86 | 30.1 | 28 | 23 | 54.2 | | 54 | | | yes | по | | 2 | 135 | 99 | 30.3 | 28 | 24 | 53.4 | | 52 | | | yes | no | | 3 | 131 | 90 | 30.2 | 27 | 22 | 53.4 | | 53 | | | yes | no | | 4 | 113 | 95 | 30.1 | 30 | 22 | 54.1 | | 54 | | | ves | no | | Ambient Temp.: <u>79</u> | Wind Speed: 2-8 | Direction: 253 | |--------------------------|-----------------|----------------| | Comments | | | | | | | | | | | 58.7 56.6 58 55 yes yes no no 30.2 30.3 161 85 107 77 23 26 20 22 #### FMVSS 105 -SERVICE BRAKE STOPPING TEST | Vehi | c <u>le:</u> G | MC 4x | 2 Schoo | l Bus | | GVWR - | LLVW | | | | | | |--------|--|-------------|-------------|-------|-------------------------|--------------------|-----------------------------------|---------------------------|-------------------|--|--|--| | Date: | <u>8-8-96</u> | ! | | Drive | er: <u>OLyle</u> | b s e | r v e | r : | | | | | | TEST | **PECIFICATIONS: Check Tire Pressure 60 mph Service Brake Stops . IBT 150 to 200 °F . Clutch Depressed or Transmission in Neutral . Brakes Can Be Modulated, Brake Force Between 15 and 150 lb Vehicle in Center of Lane at Start . Manually Controlled Retarder. ON OFF N/A ✓ 60 mph Service Brake Stops | | | | | | | | | | | | | Stop | Application
Force (lb) | | Speed (mph) | | | Stop Dist.
(ft) | Corrected
Stopping
Distance | In 12 ft Lane | Wheel Lock-
up | | | | | | Max | Avg | (mpn) | Peak | Avg | (11) | per SAE
J299 | | Indication | | | | | 1 | 131 | 113 | 55.0 | 26 | 22 | 164.0 | 164 | yes | no | | | | | 2 | 106 | 90 | 54.8 | 25 | 22 | 163.8 | 165 | yes | no | | | | | 3 | 136 | 97 | 55.2 | 25 | 21 | 172.3 | 171 | yes | no | | | | | 4 | 142 | 104 | 55.2 | 26 | 22 | 169.5 | 168 | yes | no | | | | | 5 | 136 | 112 | 55.2 | 24 | 20 | 175.9 | 175 | yes | no | | | | | 6 | 158 | 122 | 55.2 | 26 | 24 | 163.2 | 162 | yes | no | | | | | Ambien | it Temp.: | : <u>81</u> | | Wind | d Speed: | 6-7 | Direc | ction: <u>3 14</u> | | | | | Comments ____ #### FMVSS 105 -STABILITY & CONTROL TEST DATA SHEET | ehicle: | <u>GMC 4x2</u> | School Bus | | □GVWR | ⊠ LLV' | | | | | | | | |-------------|------------------------------|--------------------------------|------------------------------|------------------|-------------|--------------|---------|--------|-------------|-------------|-----|--| | Date: | 8-9-96 | | Driver: <u>C</u> | Lyle <u>b</u> s | e r | V | _e | r | : | | | | | EST S | SPECIFICA: | TIONS: | | | | | | | | | | | | | | ire Pressure | | | | | | | | | | | | | | _ | Speed (nearest hrough Speed | | | | | | | | | | | | | | nrough Speed
oph or 75% M | | | | | | | | | | | | • IBT 150 | | ipii 01 757 0 141 | iux. Diive iii | ough speed. | | | | | | | | | | | | nsmission in N | leutral | | | | | | | | | | | . Full Bra | ke Application | ı | | | | | | | | | | | | | Within Lane a | | | | | | | | | | | | | Manually | y Controlled | Retarder ON | N
A ✓ | | | OFF_ | | | | | | | | | | IN/ I | A | | | • | | | | | | | 1aximu | ım Drive Tl | | 34_mph | 759 | % of Max E | Orive ' | Through | ı Spe | eed: _ | 26 m | nph | | | Stop
No. | Speed (mph) | Approx. Dist. Out of Lane (ft) | No.
Markers
Hit | | C | Comm | ents | | | | | | | 1 | 26.2 | 0 | 0 | | | | | | | | | | | 2 | 25.8 | 0 | 0 | | | | | | | | | | | 3 | 26.2 | 0 | 0 | | | | | | | | | | | 4 | 26.4 | 0 | 0 | | | | | | | | | | | | t Temp· 6 | 2 | Wind | Speed: <u>NA</u> | | | Dir | rectio | n: <u>N</u> | IA | | | | ∖mbien | . remp <u>v</u> | | | | | | | | | | | | | Vehicle: | GMC_4 | x2 Scho | ol Bus | | - (| GVWR | □ LLVW | | | |----------|--|---|---|------------------------------|-----------------|--------------|-----------------------------|----------------|-------------------| | Date: | | | | Drive | er: <u>Ayle</u> | b s e | r v e | r : | | | System | Failed: | ⊠ N | IC Circuit i | # 1 | □ МС (| Circuit #2 | □ Power Assis
(GVWR Onl | st | | | TEST | • Check
• 60 m
• IBT I
• Trans
• Brake
• Vehice | 50 to 20
mission
es Can B
ele in Cer | ressure
ce Brake S
00 °F
in Gear | d, Brake
e at Star | t
ON
N/A | / | nd 150 lb OF | ²F | | | Ston | Application
Force (lb) | | Speed | De
(fps | | Stop Dist. | Corrected Stopping Distance | In 12 A Lane | Wheel Lock-
up | | Stop | Max | Avg | (mph) | Peak | Avg | (ft) | per SAE
J299 | III 12 /1 Eane | Indication | | 1 | 131 | 118 | 55.2 | 16 | 14 | 279.2 | 277 | yes | no | | 2 | 138 | 117 | 55.2 | 17 | 14 | 266.6 | 265 | yes | no | | 3 | 108 | 88 | 55.4 | 17 | 14 | 276.4 | 272 | yes | no | | 4 | 128 | 104 | 55.1 | 16 | 13 | 280.6 | 280 | ves | no | | | | | ikes Only, | | | : <u>6-8</u> | Di | rection: 61 | | | Vehicle: | 6MC 4x2 Sci
8-12-96 | hool Bus | Driver: <u>Ôbs</u> | | □ LLVW | | | |----------|----------------------------------|---------------|--------------------|---------------|--------------------------|--------|-------------| | System | Failed: □ | MC Circuit # | #I □ MC | Circuit #2 | □ Power Assis (GVWR Only | | | | TEST | SPECIFICATI | ONS: | | | | | | | | Check Tire | Pressure | | | | | | | | • 60 mph Serv | ice Brake St | ops | | | | | | | • IBT 150 to 2 | 200 °F | • | | | | | | | Transmission | in Gear | | | | | | | | . Brakes Can | Be Modulated | l, Brake Force E | Between 15 ar | nd 150 lb | | | | | • Vehicle in C | | • | | | | | | | Manually C | | | | OF | F | | | |
manually C | ontrolled Her | N/Δ | | 01 | | | | | | | | | | | | | | | | 60 mpl | ı Emergency | Brake Stops | | | | | Application
Force (lb) | Speed | Decel
(fpsps) | Stop Dist. | Corrected
Stopping | | Wheel Lock- | | | I | _ DPCCG | | July Dist. | D | 1 - 10 | | | | Applio
Force | cation
(lb) | Speed | Dec
(fps | | Stop Dist. | Corrected
Stopping | . 10 | Wheel Lock- | |------|-----------------|----------------|-------|-------------|-----|------------|-----------------------------|---------------|------------------| | stop | Max | Avg | (mph) | Peak | Avg | (ft) | Distance
per SAE
J299 | In 12 ii Lane | up
Indication | | I | 161 | 114 | 54.7 | 11 | 8 | 382.5 | 387 | yes | no | | 2 | 130 | 95 | 54.9 | 11 | 8 | 419.5 | 421 | yes | no | | 3 | 148 | 101 | 55.3 | 11 | 8 | 386.4 | 382 | yes | no | | 4 | _138 | 101 | 55.0 | 11 | 8 | 393.2 | 393 | yes | no | | Ambient Temp | o.: <u>61</u> | Wind Speed: | : 1-3 | Direction: | 68 | |--------------|------------------|-----------------|-------|------------|----| | Comments | Rear Brakes Only | No Front Brakes | | | | | | | | | | | | | | | | | | | Vehicle: | GMC 4x2 | School Bus | _ □ GVWR | □ LLVW | | | | | | | |----------|--|-----------------------|---------------------|----------------------------|---------------------------|--|--|--|--|--| | Date: | e: <u>8-12-96</u> | | Driver: Lyle | Observer: | | | | | | | | System | Failed: | ☑ MC Circuit #1 | □ MC Circuit #2 | □ Power Assist (GVWR Only) | □ Antilock
(GVWR Only) | | | | | | | TEST | Check Tire Pressure 60 mph Service Brake Stops IBT 150 to 200 °F Transmission in Gear Brakes Can Be Modulated, Brake Force Between 15 and 150 lb | | | | | | | | | | | | Vehicle i | n Center of Lane at S | Start | | | | | | | | | | . Manually | Controlled Retarder | . ON | OFF | | | | | | | | | | | N/A <u> ✓</u> | | | | | | | | 60 mph Emergency Brake Stops | | | | | | OU MARPA | Line gency L | Take Stops | | | |------|-----|------------------|-------|-------------|----------|--------------|-----------------------------|---------------|---------------------------------| | _ | | cation
e (lb) | Speed | Dec
(fps | | Stop Dist. | Corrected
Stopping | In 12 A Lama | Wheel Lock-
up
Indication | | Stop | Max | Avg | (mph) | Peak | Avg | (ft) | Distance
per SAE
J299 | In 12 ft Lane | | | 1 | 131 | 105 | 55.1 | 11 | 10 | 391.2 | 390 | yes | no | | 2 | 133 | 112 | 55.6 | 12 | 10 | 367.5 | 360 | yes | no | | 3 | 138 | 106 | 55.2 | 11 | 9 | 390.8 | 388 | yes | no | | 4 | 117 | 98 | 55.4 | 10 | 9 | 412.6 | 407 | yes | no | | Ambient Temp.: <u>67</u> | Wind Speed: <u>2-5</u> | Direction: <u>35</u> | |--------------------------|------------------------|----------------------| | Comments Front Brakes | Only, No Rear Brakes | | | - | | | | | | | | Vehicle: | GMC 4 | 4x2 Scho | ool Bus | | | GVWR | \Box LLVW | | | |----------|---|--|--|-------------------------|-------------------------|------------|-----------------------|--------------------------|------------------| | Date: | | | | | | e | | Observer: | | | System | Failed: | | MC Circuit | #1 | □ MC Circuit #2 | | □ Power As | ssist Antilonly) (GVWR | ock
Only) | | TEST | Chec60 mIBTTransBrakeVehic | 150 to 20
smission
es Can E
cle in Ce | ressure
ce Brake S
00°F
in Gear | ed, Brake
ne at Star | t
ON
N/A <u>•</u> | / | (| O <u>F</u> | F | | Ī | | | 1 | T | 60 mpl | n Emergenc | y Brake Stops | | | | | Application
Force (lb) | | Speed | Decel
(fpsps) | | Stop Dist | Corrected
Stopping | İ | Wheel Lock- | | stop | Max | Avg | (mph) | Peak | Avg | (ft) | Distance per SAE J299 | In 12 ft Lane | up
Indication | | 1 | 145 | 109 | 55.8 | 12 | 8 | 395.8 | 385 | yes | no | | 2 | 133 | 105 | 55.1 | 12 | 10 | 363.6 | 362 | yes | no | | 3 | 152 | 111 | 54.9 | 12 | 9 | 363.8 | 365 | yes | no | | 4 | 133 | 105 | 55.8 | 13 | 8 | 370.6 | 360 | yes | no | | | t Temp.: | | es Only, N | | | : 4-6 | 1 | Direction: <u>88</u> | | | Vehio
Date: | | | School | | □ (
er: Obser | | LLVW | | | |----------------|---|------------------|--------------------------------------|-------------|------------------|----------------|-----------------------------------|---------------|-------------------| | System | ystem Failed: MC Circuit #1 | | #1 | □ мс о | Circuit #2 | | | | | | TEST | SPECIF | | | | | | | | | | | • 60 m
. IBT 1
. Trans | 50 to 20 mission | ce Brake S
0 °F
in Gear | • | Force E | Between 15 and | d 150 lb | | | | | . Vehic | le in Cer | nter of Land
ntrolled Re | e at Start | ON | | OFI | 3 | | | | | | _ | | 60 mph | Emergency | Brake Stops | | | | | Application
Force (lb) | | Speed | Dec
(fps | | Stop Dist. | Corrected
Stopping
Distance | In 12 ft Lane | Wheel Lock-
up | | Stop | Max | Avg | (mph) | Peak | Avg | (ft) | per SAE
J299 | In 12 it Lane | Indication | | 1 | 134 | 106 | 55.0 | 26 | 21 | 185.3 | 185 | yes | no - | | 2 | 131 | 101 | 55.4 | 27 | 21 | 180.9 | 178 | yes | no | | 3 | 126 | 107 | 55.3 | 27 | 22 | 177.4 | 175 | yes | no | | 4 | 129 | 104 | 55.1 | 26 | 20 | 181.4 | 181 | yes | no | | | Ambient Temp.: 58 Wind Speed: NA Direction: NA Comments | | | | | | | | | | | | | | | | GVWR D | | r : | | |--------|--|----------------------------------|--|------------|--------------------|--------------------|-----------------------------|----------------------|------------------| | System | · · | | | | | | | □ Antiloo
(GVWR C | | | TEST | . Check
• 60 m
. IBT l
• Trans
. Brake | 50 to 20
smission
es Can B | ressure
ice Brake S
00°F
in Gear
Be Modulate | ed, Brake | | Between 15 and | 1 150 в | | | | | | | nter of Lan
ntrolled Re | | on
N/A <u>•</u> | r
1 Emergency I | OFI | 7 | | | • | Application
Force (lb) | | Speed | De
(fp: | | Stop Dist. | Corrected
Stopping | | Wheel Lock- | | stop | Max | Avg | (mph) | Peak | Avg | (ft) | Distance
per SAE
J299 | In 12 ft Lane | up
Indication | | 1 | 123 | 93 | 55.2 | 32 | 25 | 166.3 | 165 | yes | no | | 2 | 131 | 54 | 54.7 | 18 | 15 | 217.2 | 220 | yes | no | | 3 | 113 | 86 | 55.3 | 30 | 24 | 176.9 | 175 | yes | no | | 4 | 95 | 76 | 55.0 | 31 | 23 | 190.9 | 191 | yes | no | | | - | | | | | 2-4 | Dire | ection: <u>169</u> | | ### FMVSS 105 -FADE AND RECOVERY Baseline Snubs | Vehicle: | <u>GMC</u> | 4x2 | School | Bus | | |----------|------------|-----|--------|-----|--| | | | | | | | Date: 8-13-96 Driver: Qvle b s e r v e r : Don ☐ First Fade □ Second Fade #### TEST SPECIFICATIONS: - Check Tire Pressure - Vehicle at GVWR - . IBT 150 to 200 °F - \bullet 40 to 20 mph Snubs at 10 ft/sec² - Clutch Depressed or Transmission in Neutral - . Manually Controlled Retarder Off | | Maximum Average | | Decel | | IBT | (°F) | | | |------|-----------------|-------------|---------|-----|-----|------|-----|----------| | stop | Pedal Force | Pedal Force | (fpsps) | 1 | 2 | 3 | 4 | comments | | I | 28 | 25 | 10 | 156 | 179 | 179 | 183 | | | 2 | 42 3: | 3 10 | 149 | 165 | 19 | 6 | 206 | | | 3 | 40 3 | 2 10 | 159 | 173 | 20 | 3 | 204 | | | Ambient Temp.: <u>73</u> | Wind Speed: <u>5-8</u> | Direction: <u>354</u> | |--------------------------|------------------------|-----------------------| | Comments | | | | | | | ### FMVSS 105 -FADE AND RECOVERY Fade Snubs-First Fade | venicie: | GIVIC 4XZ School Bus | | | |----------|----------------------|--------------|---------------| | Date: | 8-13-96 | Driver: Lyle | Observer: Don | #### TEST SPECIFICATIONS: - Check Tire Pressure - . Vehicle at GVWR - IBT of First Snub 130 to 150 °F - 40 to 20 mph Snubs at 10 ft/sec² - . Clutch Depressed or Transmission in Neutral during Snubs - 30 Second Interval Between Snubs - 10 Snubs - . Manually Controlled Retarder Off | | Maximum | Averag e | Decel (| (fpsps) | | ĮBT | (°F) | | · | |------|-------------|-----------------|---------|---------|-----|-----|------|-----|-----------| | stop | Pedal Force | Pedal Force | Max | Avg | 1 | 2 | 3 | 4 | Comments: | | 1 | 42 | 34 | 9 | 8 | 140 | 149 | 137 | 149 | | | 2 | 43 | 36 | 11 | 10 | 199 | 205 | 199 | 215 | | | 3 | 39 | 33 | 11 | 9 | 250 | 264 | 255 | 268 | | | 4 | 43 | 33 | 11 | 10 | 306 | 322 | 315 | 325 | | | 5 | 34 | 28 | 10 | 8 | 342 | 367 | 362 | 368 | | | 6 | 31 | 26 | 8 | 7 | 383 | 407 | 400 | 404 | | | 7 | 32 | 26 | 9 | 8 | 422 | 451 | 440 | 443 | 1 | | 8 | 35 | 28 | 10 | 8 | 453 | 491 | 482 | 483 | | | 9 | 36 | 31 | 10 | 9 | 489 | 534 | 526 | 526 | | | 10 | 38 | 31 | 11 | 9 | 524 | 584 | 571 | 565 | | | Ambient Temp.: 64 | Wind Speed: NA | Direction: NA | |-------------------|----------------|---------------| | Comments | | | | | | | | | | | #### $FMVSS\ 105$ -fade and recovery Recover Snubs | Vehi | c <u>le: GMC 4x2 School</u> | B u s | | | | | | | | | | |-------|-----------------------------|-----------------------|---|---|---|---|----|---|---|-----|--| | Date: | 8-13-96 | Driver: Lyle b | S | e | r | v | _e | r | : | Don | | | | | | | | | | | | | | | | | ☐ First Fade | | | | | | | | | | | | | ☐ Second Fade | - TEST SPECIFICATIONS: 40 to 20 mph Snubs at 10 ft/sec² - 1.5 mile Interval - Clutch Depressed or Transmission in Neutral - . Manually Controlled Retarder Off | | | | Decel (fpsps) | | | IBT | (°F) |
C | | |----------|-------------|----|---------------|-----|-----|-----|------|-----|----------| | I Ston I | Pedal Force | | Max | Avg | 1 | 2 | 3 | 4 | Comments | | 1 | 41 | 32 | 12 | 10 | 473 | 519 | 574 | 561 | | | 2 | 33 | 27 | 10 | 8 | 443 | 483 | 565 | 560 | | | 3 | 38 | 33 | 12 | 10 | 411 | 451 | 555 | 547 | | | 4 | 37 | 29 | 10 | 9 | 383 | 427 | 550 | 536 | | | 5 | 39 | 31 | 12 | 10 | 374 | 420 | 539 | 535 | | | Ambient Temp.: <u>64</u> | Wind Speed: NA | Direction: NA | |--------------------------|----------------|---------------| | Comments | | | | | | | | | | | ### FMVSS 105 -FADE AND RECOVERY Baseline Snubs | V e h i | cle: GMC 4x2 School | <u>B u s</u> | | | |---------|---------------------|---------------------|-----------|------| | Date: | 8-14-96 | Driver: <u>Lyle</u> | Observer: | Mark | | | ☐ First Fade | | | | | | □ Second Fade | | | | | mr.c.m | CDE CIFIC A TIONS | | | | - TEST SPECIFICATIONS: - Check Tire Pressure - . Vehicle at GVWR - . IBT 150 to 200 °F - 40 to 20 mph Snubs at 10 ft/sec² - . Clutch Depressed or Transmission in Neutral - . Manually Controlled Retarder Off | | Maximum | Average | Decel | | IBT (°F) | | | | |------|-------------|-------------|---------|-----|----------|-----|-----|----------| | Stop | Pedal Force | Pedal Force | (fpsps) | 1 | 2 | 3 | 4 | Comments | | 1 | 47 | 37 | 10 | 186 | 197 | 169 | 180 | | | 2 | 44 | 33 | 10 | 187 | 196 | 189 | 198 | | | 3 | 45 | 35 | 10 | 189 | 191 | 194 | 202 | | | Ambient Temp.: <u>79</u> | Wind Speed: 6-12 | Direction: 246 | |--------------------------|------------------|----------------| | Comments | | | | | | | | | | | #### FMVSS 105 - FADE AND RECOVERY Fade Snubs - Second Fade Vehicle: GMC 4x2 School Bus Date: 8-15-96 Driver: Lyle Observer: Mark #### TEST SPECIFICATIONS: • Check Tie Pressure . Vehicle at GVWR . IBT of First Snub 130 to 150 °F • 40 to 20 mph Snubs at 10 ft/sec² . Clutch Depressed or Transmission in Neutral during Snubs • 30 Second Interval Between Snubs • 20 Snubs . Manually Controlled Retarder Off | | Maximum | Average | Decel (| (fpsps) | | IBT | (°F) | | | |------|-------------|-------------|---------|---------|-----|-----|------|-----|----------| | Stop | Pedal Force | Pedal Force | Max | Avg | 1 | 2 | 3 | 4 | Comments | | 1 | 54 | 45 | 14 | 11 | 127 | 132 | 133 | 136 | | | 2 | 46 | 39 | 14 | 11 | 191 | 205 | 200 | 215 | | | 3 | 48 | 39 | 13 | 11 | 250 | 269 | 260 | 270 | | | 4 | 49 | 36 | 12 | 10 | 311 | 328 | 318 | 328 | | | 5 | 43 | 32 | 12 | 9 | 363 | 382 | 365 | 382 | | | 6 | 44 | 33 | 12 | 10 | 402 | 430 | 414 | 426 | | | 7 | NA | | 8 | 42 | 32 | 12 | 10 | 482 | 510 | 496 | 516 | | | 9 | 42 | 35 | 14 | 11 | 511 | 554 | 537 | 560 | | | 10 | 43 | 36 | 14 | 12 | 543 | 604 | 579 | 608 | | | 11 | 45 | 37 | 15 | 12 | 580 | 642 | 628 | 652 | | | 12 | 43 | 33 | 15 | . 11 | 608 | 670 | 666 | 692 | | | 13 | 41 | 36 | 14 | 12 | 637 | 695 | 694 | 723 | | | 14 | 42 | 36 | 15 | 12 | 681 | 734 | 725 | 756 | | | 15 | 49 | 37 | 15 | 12 | 700 | 761 | 758 | 784 | | | 16 | 47 | 34 | 15 | 12 | 727 | 790 | 789 | 814 | | | 17 | 45 | 34 | 15 | 12 | 748 | 810 | 814 | 841 | | | 18 | 44 | 34 | 14 | 11 | 769 | 827 | 831 | 869 | | | 19 | 38 | 31 | 14 | 11 | 787 | 853 | 852 | 896 | | | 20 | 39 | 31 | 13 | 10 | 803 | 864 | 875 | 925 | | ### FMVSS 105 — FADE AND RECOVERY Recover Snubs | Vehicle: | <u>GMC</u> | <u>4x2</u> | School | Bus | |----------|------------|------------|--------|-----| |----------|------------|------------|--------|-----| Date: 8-15-96 Driver: OLvle b s e r v e r : Mark ☐ First Fade □ Second Fade #### TEST SPECIFICATIONS: - 40 to 20 mph Snubs at 10 ft/sec² - 1 .5 mile Interval - Clutch Depressed or Transmission in Neutral - Manually Controlled Retarder Off | _ | Maximum Averag | | Decel (fpsps) | | | IBT | (°F) | | | |------|----------------|-------------|---------------|-----|-----|-----|------|-----|----------| | Stop | Pedal Force | Pedal Force | Max | Avg | 1 | 2 | 3 | 4 | Comments | | 1 | 45 | 39 | 16 | 12 | 680 | 729 | 800 | 836 | | | 2 | 41 | 36 | 12 | 12 | 615 | 645 | 758 | 788 | <u> </u> | | 3 | 42 | 36 | 14 | 11 | 534 | 582 | 700 | 743 | | | 4 | 44 | 37 | 14 | 11 | 469 | 521 | 661 | 701 | | | 5 | 39 | 33 | 12 | 10 | 435 | 487 | 639 | 682 | | | Ambient Temp.: <u>68</u> | Wind Speed: NA | Direction: NA | |--------------------------|----------------|---------------| | Comments | | | | | | | | | | | #### FMVSS 105 -WATER RECOVERY | Vehicle: | GMC 4x2 School Bus | | | | | | | | | |----------|--------------------|----------------|---|---|---|---|---|---|---| | Date: | 8-15-96 | Driver: Qyle b | S | e | r | V | e | r | : | | | | | | | | | | | | ## Baseline #### TEST SPECIFICATIONS: - . Check Tire Pressure - Vehicle at GVWR - IBT 150 to 200 °F - 30 mph Stops at 10 ft/sec² - Clutch Depressed or Transmission in Neutral - Manually Controlled Retarder Off - . Following Baseline Stops, Drive for 2 Minutes at 5 mph in Water Trough with 6 Inches of Water | | Maximum
Pedal Force | Average | Decel (| (fpsps) | G | |------|------------------------|------------|---------|---------|----------| | stop | | Pedal Ford | e Max | Avg | Comments | | 1 | 63 | 57 | 16 | 13 | | | 2 | 66 | 57 | 16 | 13 | | | 3 | 66 | 57 | 16 | 13 | | ## Recovery - 30 mph Stops at 10 ft/sec² - Clutch Depressed or Transmission in Neutral - Manually Controlled Retarder Off - Following First Four Stops, Immediately Accelerate at Maximum Rate to 30 mph and Begin Next Stop | · | Maximum | Average | Decel | (fpsps) | Comments | |------|-------------|-------------|---------|---------|----------| | Stop | Pedal Force | Pedal Force | Max Avg | | Comments | | 1 | 69 | 52 | 14 | 12 | | | 2 | 58 | 51 | 14 | 12 | | | 3 | 61 | 52 | 14 | 13 | | | 4 | 63 | 56 | 15 | 13 | | | 5 | 66 | 60 | 16 | 14 | - | | Ambient Temp.: 76 | Wind Speed: 8-14 | Direction: 219 | |-------------------|------------------|----------------| | Comments | • | | | | | | ## 10.2 Appendix 2 ## FMVSS 105 - Freightliner 4x2 School Bus Test Sequence | Sequence | <u>Test</u> | <u>Page</u> | |----------|---------------------------------|----------------| | 1. | Burnish | | | 2. | Second Effectiveness | A2-2A & B | | 3. | Brake-in-a-curve Loaded (@GVWR) | A2-3 | | 4. | First Reburnish | | | 5. | Third Effectiveness | A2-5A & B | | 6. | Brake-in-a-curve Empty (@LLVW) | A2-6 | | 7. | Partial Failures Empty | A2-7A & B | | 8. | Partial Failures Loaded | A2-8A & B | | 9. | Inoperative Power Assist Loaded | A2-9 | | 10. | Failed ABS Loaded | A2-10 | | 11. | First Fade and Recovery | A2-11A, B, & C | | 12. | Second Reburnish | | | 13. | Second Fade and Recovery | A2-13A, B, & C | | 14. | Third Reburnish | | | 15. | Water Recovery | A2-15 | All 15 steps in this sequence were performed at VRTC. ## FMVSS 105 -SERVICE BRAKE STOPPING TEST | Vehicle:
Date: | | | 2 School Bu | | | GVWR - | | Observer: | | | | | |--|---|--------------------|-------------|-------------|-----------------|---------------|-----------------------------|---------------|-------------------|--|--|--| | | CEST SPECIFICATIONS: Check Tie Pressure 30 mph Service Brake Stops IBT 150 to 200 °F Clutch Depressed or Transmission in Neutral Brakes Can Be Modulated, Brake Force Between 15 and 150 lb Vehicle in Center of Lane at Start Manually Controlled Retarder. ON OFF N/A ✓ 30 mph Service Brake Stops | | | | | | | | | | | | | | Application
Force (lb) | | Speed | Dec
(fps | cel | Stop Dist. | Corrected Stopping Distance | In 12 ft Lane | Wheel Lock-
up | | | | | Stop | Max | Avg (mph) Peak Avg | | (ft) | per SAE
J299 | In 12 it Lane | Indication | | | | | | | 1 | 119 | 90 | 30.5 | 20 | 18 | 74.2 | 72 | yes | no | | | | | 2 | 126 | 91 | 30.5 | 21 | 19 | 70 .7 | 68 | yes | no | | | | | 3 | 124 | 102 | 30.5 | 22 | 20 | 69.3 | 67 | yes | по | | | | | 4 | 123 | 104 | 30.3 | 22 | 19 | 69.8 | 68 | yes | no | | | | | 5 | 132 | 113 | 30.5 | 24 | 21 | 65.6 | 63 | yes | no | | | | | 6 | 131 | 112 | 30.2 | 24 | 21 | 64.9 | 64 | yes | no | | | | | Ambient Temp.: 68 Wind Speed: NA Direction: NA Comments | | | | | | | | | | | | | ## FMVSS 105 -SERVICE BRAKE STOPPING TEST | Vehicle: | Freight | liner 4x | 2 School B | Bus | ⊠ · | GVWR 🗆 | LLVW | | | |----------|--|---|---|-------------------------------------|--------------------|---------------|-----------------------------------|-------------------|------------------| | Date: | <u>8-21-9</u> | 6 | | Driv | er: <u>Œyle</u> | b s e | <u>r v e</u> | r : | | | TEST | Chec60 mIBT lClutcBrakeVehice | 50 to 20
th Depres
es Can B
tele in Ce | Pressure
ce Brake S
00°F
ssed or Tra | ansmission
d. Brake
e at Star | Force B
t
ON | etween 15 and | OF | F | | | | , | | | r· | 60 m | ph Service Br | ake Stops | 7 | | | Stop | Application
Force (lb) | | Speed | De
(fp: | cel
sps) | Stop Dist. | Corrected
Stopping
Distance | In 12 ft Lane | Wheel Lock- | | | Max | Avg | (mph) | Peak | Avg | (ft) | per SAE
J299 | III 12 It Calle | up
Indication | | 1 | 140 | 124 | 60.1 | 22 | 20 | 229.9 | 229 | yes | no | | 2 | 167 | 111 | 60.4 | 24 | 21 | 220.6 | 218 | yes | no | | 3 | 133 | 117 | 60.3 | 24 | 21 | 219.3 | 217 | yes | no | | 4 | 166 | 111 | 60.3 | 25 | 20 | 219.2 | 217 | yes | no | | 5 | 141 | 120 | 59.9 | 24 | 22 | 217.4 | 218 | yes | no | | 6 | 141 | 120 | 60.2 | 23 | 21 | 222.5 | 221 | yes | no | | | _ | | | | | | Dire | ction: <u>295</u> | | ## FMVSS
105 — STABILITY & CONTROL TEST DATA SHEET | enicie: | 8-21-96 | er_4x2 School | Bus
Driver: | □ GVWR □ LLVW <u>CLyle b s e r v e</u> r : | |-------------|--|--|--|--| | EST S | <u>PECIFICA</u> | TIONS: | | | | Jaximuu | Max. Dr 75% of Braking IBT 150 Clutch D Full Bra Vehicle Manually | Max. Drive-T
Runs at 30 m
to 200 °F
Depress or Tranke Application
Within Lane at
y Controlled | hrough Speed
ph or 75% in
ansmission in
t Start
Retarder C | t whole mph): I (nearest whole mph): Max. Drive-Through Speed: Neutral ONOFF 75% of Max Drive Through Speed: 26 mph | | Stop
No. | Speed (mph) | Approx. Dist. Out of Lane (ft) | No.
Markers
Hit | Comments | | 1 | 26.0 | 0 | 0 | | | 2 | 26.0 | 0 | 0 | | | 3 | 26.1 | 0 | 0 | | | 4 | 26.0 | 0 | 0 | | | mbient | Temp.: <u>8</u> | 2 | | Direction: <u>284</u> | ## FMVSS 105 — SERVICE BRAKE STOPPING TEST | Vehicle: | | | 2 School B | | | | 3 LLVW | | | |----------|---|---|---|------------------------------------|----------------------------|-----------------|-----------------------------|-----------------|-------------------| | Date: | 8-22-9 | 6 | | Drive | er: <u>Lyle</u> | | | Observer: | | | TEST | Check30 nIBT lCluteBrakeVehice | 50 to 20
h Depres
es Can B
ele in Ce | ressure
ice Brake S
00°F
ssed or Tra | nsmission
d, Brake
e at Star | Force B
t
ON
N/A_ | etween 15 and | | OFF | | | | 1 | | <u> </u> | | 30 III | pii Sei vice bi | T Stops | | _ | | Stop | Application
Force (lb) | | Speed | | Decel (fpsps) Stop D | | Corrected Stopping Distance | | Wheel Lock-
up | | | Max | Avg | (mph) | Peak | Avg | (ft) | per SAE
J299 | , m , z ie bane | Indication | | 1 | 114 | 98 | 30.5 | 32 | 27 | 50.8 | 49 | yes | no | | 2 | 138 | 104 | 30.4 | 31 | 27 | 53.3 | 52 | yes | no | | 3 | 153 | 122 | 30.5 | 30 | 27 | 53.1 | 51 | yes | no | | 4 | 133 | 118 | 30.2 | 30 | 28 | 52.2 | 52 | | no | | 5 | 154 | 115 | 30.3 | 30 | 27 | 52.7 | 52 | yes | no | | 6 | 114 | 98 | 30.0 | 30 | 27 | 53.0 | 53 | ves | no | | | | | | | | NA | Ω | Direction: NA | | #### FMVSS 105 -SERVICE BRAKE STOPPING TEST | Vehicle:
Date: | Freight 8-22-9 | liner 4x2 | 2 School B | us
Drive | er: <u>Lyle</u> | GVWR 🛚 | LLVW O | oserver: | | |-------------------|----------------|-----------|-------------|-------------|-----------------|----------------|-----------|---------------|-------------| | TEST | SPECIF | ICATIO | NS: | | | | | | | | | | k Tire P | | | | | | | | | | | • | ce Brake S | tops | | | | | | | | • IBT 1 | 50 to 20 | 00 °F | | | | | | | | | | | ssed or Tra | | | | | | | | | | | | | | etween 15 and | 150 в | | | | | | | nter of Lan | | | | | | | | | . Manı | ually Co | ntrolled Re | tarder. | ON | | OF | F | | | | | | | | N/A_ | | | | | | | | | | | 60 m | ph Service Bra | ake Stops | | | | | Appli | cation | | Dec | rel | | Corrected | 1 | | | stop | | e (lb) | | | sps) | | stopping | | Wheel Lock- | | | | · (.6) | Speed | | , p =) | Stop Dist. | Distance | In 12 ft Lane | up | | |] ,,,,, | !. | (mph) | D 1. | A | (ft) | per SAE | | Indication | | | Max | Avg |
 | Peak | Avg | ļ | J299 | | | | 1 | 136 | 117 | 60.4 | 31 | 27 | 188 | 186 | yes | no | | 2 | 132 | 113 | 60.0 | 26 | 24 | 191 | 191 | yes | no | | 3 | 139 | 114 | 59.9 | 31 | 24 | 183 | 184 | yes | no | | 4 | 146 | 114 | 59.9 | 29 | 25 | 181 | 181 | yes | no | | 5 | 147 | 124 | 60.1 | 28 | 25 | 183 | 182 | yes | no | | 6 | 155 | 113 | 60.0 | 28 | 25 | 178 | 178 | yes | no | | Ambien | • | : 69 | | Wind | l Speed: | 3-4 | Dire | ection: 138 | | ## FMVSS 105 — STABILITY & CONTROL TEST DATA SHEET | Date: 8-22-96 Driver: Lyle Observer: TEST SPECIFICATIONS: • Check Tire Pressure • Max. Drive-Through Speed (nearest whole mph): . 75% of Max. Drive-Through Speed (nearest whole mph): . Braking Runs at 30 mph or 75% Max. Drive-Through Speed: . IBT 150 to 200 °F . Clutch Depress or Transmission in Neutral • Full Brake Application • Vehicle Within Lane at Start . Manually Controlled Retarder ON ON OFF ON ON OFF ON | | | r 4x2 School | | □GVWR | | | |--|---------|--|--|---|---------------------------------------|-------------|-----------------------| | • Check Tire Pressure • Max. Drive-Through Speed (nearest whole mph): . 75% of Max. Drive-Through Speed (nearest whole mph): . Braking Runs at 30 mph or 75% Max. Drive-Through Speed: . IBT 150 to 200 °F . Clutch Depress or Transmission in Neutral • Full Brake Application • Vehicle Within Lane at Start . Manually Controlled Retarder ON OFF Maximum Drive Through Speed: 37 mph 75% of Max Drive Through Speed: 28 mph Stop No. Dist. Out of Lane (ft) 1 28.2 0 0 0 2 28.6 0 0 3 28.2 0 0 | Date: | 8-22-96 | | Driver: <u>I</u> | .yle | | Observer: | | • Max. Drive-Through Speed (nearest whole mph): . 75% of Max. Drive-Through Speed (nearest whole mph): . Braking Runs at 30 mph or 75% Max. Drive-Through Speed: . IBT 150 to 200 °F . Clutch Depress or Transmission in Neutral • Full Brake Application • Vehicle Within Lane at Start . Manually Controlled Retarder ON ON OFF- N/A ✓ Maximum Drive Through Speed: 37 mph 75% of Max Drive Through Speed: 28 mph Stop No. Dist. Out of Lane (ft) No. Markers Hit 1 28.2 0 0 2 28.6 0 0 3 28.2 0 0 0 0 | TEST S | <u>PECIFICA</u> | TIONS: | | | | | | Stop No. Speed (mph) Dist. Out of Lane (ft) Markers Hit Comments 1 28.2 0 0 2 28.6 0 0 3 28.2 0 0 | Maximur | • Max. Dr
. 75% of
. Braking
. IBT 150
. Clutch I
• Full Bra
• Vehicle
. Manually | Max. Drive-T
Max. Drive-T
Runs at 30 m
to 200 °F
Depress or Tra
ke Application
Within Lane a | Through Speed (apph or 75% Manusmission in Notes to Start Retarder ON N/A | nearest whole nx. Drive-Thro eutral | ough Speed: | | | 2 28.6 0 0 3 28.2 0 0 | - | 1 - | Dist. Out
of Lane | Markers | | Comi | nents | | 3 28.2 0 0 | 1 | 28.2 | 0 | 0 | | | | | | 2 | 28.6 | 0 | 0 | | | | | 4 28.0 0 0 | 3 | 28.2 | 0 | 0 | | | | | | 4 | 28.0 | 0 | 0 | | | | | Ambient Temp.: 74 Wind Speed: 6-8 Direction: 206 | Ambient | Temp.: <u>7</u> | 4 | Wind S | peed: <u>6-8</u> | | Direction: <u>206</u> | | Comments Max Brake Through Speed - 34 mph | Commer | nts <u>Max F</u> | Brake Through | Speed - 34 mg | oh | | | | Vehicle: | Freight | liner <u>4x</u> 2 | 2 School B | us | - | GVWR - | Observer: | | | | | |--|---------|---|------------|-------|-----------------|-------------|-----------------------------|----------------|-------------------------|--|--| | Date: | 8-28-9 | 6 | | Drive | er: <u>Lyle</u> | | | | | | | | System | Failed: | □ MC Circuit #1 □ MC Circuit #2 □ Power Assist □ A (GVWR Only) (GVV | | | | | | | | | | | TEST SPECIFICATIONS: Check Tire Pressure 60 mph Service Brake Stops IBT 150 to 200 °F Transmission in Gear Brakes Can Be Modulated, Brake Force Between 15 and 150 lb Vehicle in Center of Lane at Start Manually Controlled Retarder. ON OFF | | | | | | | | | | | | | | | | | | 60 mpl | h Emergency | Brake Stops | _ | | | | | Curr | | Application Force (lb) Speed | | De- | cel
sps) | Stop Dist. | Corrected stopping Distance | In 12 ft Lane | Wheel Lock- | | | | Stop | Max | Avg | (mph) | Peak | Avg | (ft) | per SAE
J299 | III 12 It Lane | up
Indication | | | | ı | 134 | 112 | 60.1 | 15 | 11 | 406.2 | 405 | yes | no | | | | Ambient Temp.: <u>68</u> | Wind Speed: <u>4-7</u> | Direction: 25 | |-----------------------------------|------------------------|---------------| | Comments <u>Rear Brakes</u> Only. | No Front Brakes | | 412.1 408.0 416.6 401 414 yes yes yes no no 60.8 60.1 60.2 148 139 144 2 3 126 119 124 15 14 15 11 11 11 | | | | 2 School B | | | GVWR - | | | | |-----------------|---|---|--|-----------------------|-------------|----------------|-----------------------------------|--------------------|------------------| | Date:
System | | | MC Circuit | | | Circuit #2 | | | | | ΓEST : | Check60
mIBT 1TransBrakeVehice | 50 to 20
emission
es Can B
ele in Ce | ressure
ce Brake S
00°F
in Gear | d, Brake
e at Star | t
ON | Between 15 and | 150 јь | F | | | | | | | 1 | 60 mph | Emergency | Brake Stops | | · | | C. | | cation
e (lb) | Speed | Dec
(fps | cel
sps) | Stop Dist. | Corrected
Stopping
Distance | In 12 ft Lane | Wheel Lock | | Stop | Max | Avg | (mph) | Peak | Avg | (ft) | per SAE
J299 | III 12 II Laile | up
Indication | | 1 | 142 | 128 | 60.1 | 16 | 12 | 386.2 | 385 | yes | no | | 2 | 139 | 116 | 60.2 | 15 | 12 | 382.5 | 380 | yes | no | | 3 | 138 | 118 | 60.3 | 13 | 11 | 410.2 | 406 | yes | no | | 4 | 144 | 110 | 60.0 | 15 | 10 | 409.6 | 410 | yes | no | | | | | kes Only, | | | : 6 | Dire | ction <u>: 350</u> | | | Vehicle: | Freightli | iner 4x2 | 2 School B | us | - (| | LLVW | | | |----------|-------------------|----------|--------------|----------------|------------------|----------------|---------------------|------------------------|------------------| | Date: | <u>8-29-96</u> |) | • | Drive | er: <u>CLyle</u> | b s e | r v e | r : | | | System | Failed: | ⊠ M | IC Circuit 7 | #1 | □ МС (| Circuit #2 | □ Power Assist | d □ Antiloc
(GVWR O | | | TEST S | SPECIFI | | | | | | | | | | | Check | | | | | | | | | | | | | ce Brake S | tops | | | | | | | | • IBT 15 | | | | | | | | | | | Transr Broker | | | d Broko | Force F | Between 15 and | 150 Ib | | | | | | | nter of Lan | • | | between 15 and | 150 10 | | | | | | | ntrolled Re | | | | OF | F | | | | | J | | | N/A_✓ | 1 | | | | | | | | | | | _ | | | | | | | | | | 60 mph | Emergency | Brake Stops | | т | | ' | Applic | ation | | De | cel | į | Corrected | | | | _ | Force | (lb) | Speed | (fps | sps) | Stop Dist. | Stopping | X 10 6 I - | Wheel Lock- | | Stop | | | (mph) | | | (ft) | Distance
per SAE | In 12 ft Lane | up
Indication | | | Max | Avg | | Peak | Avg | 1 | J299 | | maication | | | | | | - | | | | | | | 1 | 130 | 118 | 60.7 | 12 | 11 | 428.9 | 419 | yes | no | | 2 | 133 | 121 | 60.4 | 13 | 11 | 410.5 | 405 | yes | no | | 3 | 135 | 119 | 60.3 | 12 | 11 | 408.6 | 404 | yes | no | | 4 | 133 | 118 | 60.4 | 12 | 11 | 414.8 | 409 | yes | no | | | | | | | | | | | | | | | | | | | : <u>3-4</u> | Dir | rection: 68 | | | Comme | nts Re | ar Brake | es Only, N | lo Front | Brakes | | | | | | | | | 2 School B | | | | LLVW | | | |--------|--|------------------|-----------------------|--|-----------------|--------------------|----------------------------|---------------|-------------| | Date: | 8-29-9 | <u> 6</u> | | Drive | er: <u>Œyle</u> | b s e | <u>r v e</u> | r : | | | System | Failed: | □ M | IC Circuit | #1 | ⊠ MC (| Circuit #2 | □ Power Assist (GVWR Only) | | | | TEST | | ICATIO | | | | | | | | | | | k Tire Pi | ressure
ce Brake S | tone | | | | | | | | | 50 to 20 | | tops | | | | | | | | | smission | | | | | | | | | | • Brake | es Can B | e Modulate | d, Brake | Force E | Between 15 and | 150 lb | | | | | | | nter of Lan | | | | | | | | | • Manı | ually Co | ntrolled Re | tarder. | ON | <i>'</i> | O | F | <u>F</u> | | | | | | | N/A <u>√</u> | <u> </u> | | | | | | , | | | <u>, </u> | 60 mph | Emergency I | Brake Stops | | | | | | cation
e (1b) | _ | Dec | cel
sps) | C. D. | Corrected
Stopping | | Wheel Lock- | | Stop | | 1 (/ | Speed
(mph) | (- <u>)</u> | Ι, | Stop Dist.
(ft) | Distance | I" 12 ft Lane | up | | | Max | Avg | (mpn) | Peak | Avg | (11) | per SAE
J299 | | Indication | | 1 | 138 | 120 | 60.5 | 8 | 8 | 551.8 | 543 | ı yes | no | | 2 | 140 | 115 | 60.5 | 10 | 8 | 550.4 | 541 | yes | no | | 3 | 145 | 120 | 60.3 | 10 | 8 | 564.7 | 559 | yes | no | | 4 | 140 | 122 | 59.9 | 10 | 8 | 547.5 | 549 | yes | no | | Ambien | t Temp. | · 61 | | Wir | nd Sneed | : <u>N/A</u> | Dir | ection: N/A | | | | - | | | | | · | | | _ | | | Comments Front Brakes Only, No Rear Brakes | | | | | | | | | | Vehicl
Date: | | | 4x2 Schoo | | □ (
er: <u>Obser</u> | | LLVW | | | | | |-----------------|---|------------------|------------|----------------|-------------------------|------------|-----------------------------|-------------------|------------------|--|--| | System | Failed: | □ M | IC Circuit | ‡ 1 | □ МС О | Circuit #2 | □ Power Assist | | | | | | TEST | • Check Tire Pressure • 60 mph Service Brake Stops . IBT 150 to 200 °F • Transmission in Gear . Brakes Can Be Modulated, Brake Force Between 15 and 150 lb • Vehicle in Center of Lane at Start . Manually Controlled Retarder. ONOFF | | | | | | | | | | | | | | cation
e (lb) | Speed | Dec
(fps | | Stop Dist. | Corrected
Stopping | In 12 6 I ama | Wheel Lock- | | | | Stop | Max | Avg | (mph) | Peak | Avg | (ft) | Distance
per SAE
J299 | In 12 ft Lane | up
Indication | | | | 1 | 126 | 96 | 60.4 | 25 | 22 | 226.7 | 224 | yes | no | | | | 2 | 161 | 124 | 60.4 | 25 | 23 | 209.7 | 207 | yes | no | | | | 3 | 140 | 121 | 60.3 | 25 | 22 | 206.1 | 204 | yes | no | | | | 4 | 135 | 112 | 60.5 | 24 | 22 | 217.0 | 213 | yes | no | | | | | nt Temp. | | | Wir | nd Speed | : 2-4 | Dire | ection: <u>04</u> | | | | | | | | | | | GVWR r | | bserver: | | |--------|---|--|--|-----------------------|--------------------|--------------------|-------------------------------------|---------------|----------------------------------| | System | Failed: | □ M | IC Circuit # | ‡I | □ МС (| Circuit #2 | | t | | | TEST | • 60 m • IBT I • Trans • Brake • Vehice | of Tire Proph Service 50 to 20 mission es Can Belle in Cer | ressure
ce Brake St
00 °F
in Gear | d, Brake
e at Star | t
ON
N/A.∡ | | OF | F | | | stop | Applic
Force
M a | | Speed
(mph) | De
(fps | cel
sps)
Avg | Stop Dist.
(ft) | Corrected Stopping Distance per SAE | In 12 ft Lane | Wheel Lock- up Indication | | | IVI a | Avg | | reak | Avg | | J299 | | | | 1 | 86 | 58 | 60.2 | 21 | 16 | 259.8 | 258 | yes | 1 & 2 | | 2 | 69 | 59 | 60.1 | 19 | 16 | 277.3 | 276 | yes | no | | 3 | 104 | 85 | 60.0 | 26 | 21 | 220.3 | 220 | yes | no | | 4 | 109 | 87 | 60.3 | 28 | 23 | 214.2 | 212 | yes | no | Ambient Temp.: 77, 56 Wind Speed: 4-7 Direction: 41 Comments Stops 1&2 run on 8-29-96, Stops 3&4 run on 8-30-96 ## FMVSS 105 -FADE AND RECOVERY Baseline Snubs | Vehicle: | Freightliner 4x2 School B | us | | | | | | | | |----------|---------------------------|-----------------------|---|---|---|---|---|---|---| | Date: | 8-30-96 | Driver: Qyle b | S | e | r | v | e | r | : | ☑ First Fade☐ Second Fade - Check Tire Pressure - Vehicle at GVWR - . IBT 150 to 200 $^{\circ}F$ - 40 to 20 mph Snubs at IO ft/sec² - Clutch Depressed or Transmission in Neutral - Manually Controlled Retarder Off | Cı | Maximum | Average | Decel | | IBT | (°F) | | 2 | |------|-------------|-------------|---------|-----|-----|------|-----|----------| | Stop | Pedal Force | Pedal Force | (fpsps) | l | 2 | 3 | 4 | Comments | | 1 | 61 | 48 | 13 | 150 | 154 | 159 | 162 | | | 2 | 72 | 55 | 15 | 172 | 198 | 189 | 197 | | | 3 | 56 | 44 | 11 | 177 | 186 | 192 | 198 | | | Ambient Temp.: <u>61</u> | Wind Speed: 1-3 | Direction: <u>333</u> | |--------------------------|-----------------|-----------------------| | Comments | | | | | | | | | | | ## FMVSS 105 -FADE AND RECOVERY Fade Snubs-First Fade | Vehicle: | rreignumer | 4XZ School Bus | _ | | | | | | | | | | |----------|------------|----------------|-----------------------|---|---|---|---|---|---|---|------|--| | Date: | 8-30-96 | | Driver: Lvle b | S | e | r | v | e | r | : | Mark | | - Check Tire Pressure - Vehicle at GVWR - . IBT of First Snub 130 to 150 $^{\circ}F$ - 40 to 20 mph Snubs at 10 ft/sec² - Clutch Depressed or Transmission in Neutral during Snubs - 30 Second Interval Between Snubs - 10 Snubs - . Manually Controlled Retarder Off | a. | Maximum | Average | Decel | (fpsps) | | IBT | (OF) | | _ | |------|-------------|-------------|-------|---------|-----|-----|------|-----|----------| | Stop | Pedal Force | Pedal Force | Max | Avg | 1 | 2 | 3 | 4 | Comments | | 1 | 52 | 45 | 12 | 11 | 121 | 134 | 134 | 139 | | | 2 | 77 | 48 | 13 | 12 | 181 | 190 | 196 | 201 | | | 3 | 58 | 41 | 12 | 11 | 237 | 241 | 264 | 268 | | | 4 | 55 | 40 | 12 | 11 | 288 | 286 | 321 | 326 | | | 5 | 60 | 38 | 12 | 11 | 346 | 334 | 366 | 379 | | | 6 | 46 | 36 | 12 | 10 | 373 | 366 | 401 | 411 | | | 7 | 62 | 38 | 11 | 10 | 413 | 405 | 444 | 453 | | | 8 | 47 | 42 | 13 | 11 | 452 | 443 | 484 | 496 | | | 9 | 42 | 37 | 11 | II | 479 | 475 | 521 | 534 | | | 10 | 50 | 40 | 13 | 11 | 514 | 512 | 564 | 577 | | | Ambient Temp.: <u>67</u> | Wind Speed: 2-4 | Direction: 98 | |--------------------------|-----------------|---------------| | Comments | | | | | | | | | | | ## FMVSS 105 — FADE AND RECOVERY Recover Snubs | Vehicle: | Freightliner 4x2 School Bus | | | |----------|-----------------------------|--------------|----------------| | Date: | 8-30-96 | Driver: Lyle | Observer: Mark | | | | | | | | ☐ First Fade | | | | | ☐ Second Fade | | | - 40 to 20 mph Snubs at 10 ft/sec² - . 1.5 mile Interval - . Clutch Depressed or Transmission in Neutral - . Manually Controlled Retarder Off | | Maximum | Average | Decel (| (fpsps) | | IBT | (OF) | | | |------|-------------|-------------|---------|---------|-----|-----|------|-----|----------| | stop | Pedal Force | Pedal Force | Max | Avg | 1 | 2 | 3 | 4 | Comments | | 1 | 47 | 40 | 12 | 11 | 453 | 458 | 525 | 508 | | | 2 | 50 | 39 | 13 | 11 | 407
| 420 | 482 | 468 | | | 3 | 50 | 43 | 13 | 12 | 378 | 397 | 444 | 439 | | | 4 | 49 | 39 | 12 | 11 | 361 | 366 | 407 | 422 | | | 5 | 57 | 42 | 13 | 12 | 341 | 366 | 401 | 399 | | | Ambient Temp.: 67 | Wind Speed: 2-4 | Direction: 98 | | |-------------------|-----------------|---------------|--| | Comments | | | | | | | | | ## FMVSS 105 -FADE AND RECOVERY Baseline Snubs | Vehic | le: <u>Freightliner 4x2 School</u> | Bus | | | | | | | | | |-------|------------------------------------|------------------------|---|---|---|---|---|---|---|--| | Date: | 8-30-96 | Driver: Q vle b | S | e | r | V | e | r | : | | | | | | | | | | | | | | | | □ First Fade | | | | | | | | | | | | ⊠ Second Fade | | | | | | | | | | - Check Tire Pressure - . Vehicle at GVWR - IBT 150 to 200 °F - 40 to 20 mph Snubs at 10 ft/sec² - Clutch Depressed or Transmission in Neutral - . Manually Controlled Retarder Off | Char | Maximum | Average | Decel | | IBT | (°F) | | | |------|-------------|-------------|---------|-----|-----|------|-----|----------| | Stop | Pedal Force | Pedal Force | (fpsps) | 1 | 2 | 3 | 4 | Comments | | 1 | 63 | 51 | 11 | 155 | 151 | 170 | 172 | | | 2 | 66 | 48 | 10 | 172 | 193 | 199 | 196 | | | 3 | 57 | 46 | 10 | 179 | 190 | 189 | 196 | | | Ambient Temp.: <u>73</u> Comments | Wind Speed: 2-4 | Direction: 75 | |-----------------------------------|-----------------|---------------| | | | | #### FMVSS 105 - FADE AND RECOVERY Fade Snubs - Second Fade Vehicle: Freightliner 4x2 School Bus Date: 8-30-96 Driver: Lyle Observer: Mark #### **TEST SPECIFICATIONS:** • Check Tire Pressure • Vehicle at GVWR • IBT of First Snub 130 to 150 °F • 40 to 20 mph Snubs at 10 ft/sec² . Clutch Depressed or Transmission in Neutral during Snubs • 30 Second Interval Between Snubs • 20 Snubs • Manually Controlled Retarder Off | | Maximum | Average | Decel | (fpsps) | | IBT | (°F) | | | |------|-------------|-------------|-------|---------|-----|-----|------|-----|----------| | Stop | Pedal Force | Pedal Force | Max | Avg | 1 | 2 | 3 | 4 | Comments | | 1 | 75 | 53 | 13 | 11 | 133 | 135 | 147 | 151 | | | 2 | 74 | 46 | 12 | 11 | 177 | 196 | 202 | 204 | | | 3 | 70 | 47 | 14 | 12 | 250 | 245 | 259 | 257 | | | 4 | 51 | 41 | 11 | 10 | 295 | 297 | 315 | 308 | | | 5 | 78 | 41 | 11 | 10 | 338 | 338 | 357 | 355 | | | 6 | 62 | 41 | 12 | 10 | 377 | 378 | 397 | 401 | | | 7 | 54 | 39 | 10 | 10 | 404 | 413 | 432 | 440 | | | 8 | 58 | 42 | 11 | 10 | 439 | 424 | 473 | 475 | | | 9 | 48 | 41 | 11 | 10 | 471 | 478 | 503 | 507 | | | 10 | 52 | 40 | 11 | 10 . | 503 | 510 | 542 | 554 | | | 11 | 56 | 44 | 12 | 11 | 532 | 533 | 574 | 581 | | | 12 | 47 | 41 | 11 | 10 | 571 | 572 | 607 | 629 | | | 13 | 50 | 44 | 13 | 11 | 604 | 602 | 639 | 656 | | | 14 | 52 | 42 | 12 | 11 | 628 | 626 | 664 | 687 | | | 15 | 46 | 41 | 12 | 10 | 656 | 641 | 688 | 716 | | | 16 | 48 | 43 | 11 | 11 | 669 | 670 | 708 | 743 | | | 17 | 47 | 41 | 11 | 10 | 702 | 665 | 728 | 762 | | | 18 | 51 | 40 | 10 | 9 | 728 | 710 | 752 | 770 | | | 19 | 54 | 40 | 11 | 10 | 745 | 726 | 772 | 803 | | | 20 | 46 | 40 | 11 | 10 | 755 | 736 | 779 | 819 | | ## FMVSS 105 -FADE AND RECOVERY Recover Snubs | Vehicle: | Freightliner 4x2 School Bus | | | |----------|-----------------------------|--------------|----------------| | Date: | 8-30-96 | Driver: Lyle | Observer: Mark | | | | | | | | □ First Fade | | | | | ☑ Second Fade | | | - 40 to 20 mph Snubs at 10 ft/sec² - . 1.5 mile Interval - . Clutch Depressed or Transmission in Neutral - Manually Controlled Retarder Off | | Maximum | Average | Decel (fpsps | | | IBT | (°F) | | | |------|-------------|-------------|--------------|-----|-----|-----|------|-----|----------| | stop | Pedal Force | Pedal Force | Max | Avg | 1 | 2 | 3 | 4 | Comments | | 1 | 51 | 45 | 12 | 10 | 609 | 631 | 678 | 672 | | | 2 | 59 | 50 | 12 | 11 | 509 | 560 | 571 | 569 | | | 3 | 58 | 45 | 12 | 10 | 437 | 495 | 510 | 499 | | | 4 | 59 | 46 | 12 | 11 | 403 | 436 | 472 | 458 | | | 5 | 49 | 38 | 11 | 9 | NA | NA | NA | NA | | | Ambient Temp.: <u>74</u> | Wind Speed: 4-6 | Direction: 335 | |--------------------------|-----------------|----------------| | Comments | | | | | | | | | | | #### FMVSS 105 -WATER RECOVERY | Vehicle: Freight | liner <u>4x2</u> | School | Bus | |------------------|------------------|--------|-----| |------------------|------------------|--------|-----| Date: <u>9-2-96</u> Driver: <u>Obyle b s e r v e r : ______</u> #### **Baseline** #### **TEST SPECIFICATIONS:** - . Check Tire Pressure - . Vehicle at GVWR - . IBT 150 to 200 °F - 30 mph Stops at 10 ft/sec² - . Clutch Depressed or Transmission in Neutral - Manually Controlled Retarder Off - . Following Baseline Stops, Drive for 2 Minutes at 5 mph in Water Trough with 6 Inches of Water | | Maximum Average | | Decel (| (fpsps) | Community | |------|-----------------|------------|------------------|---------|-----------| | stop | Pedal Force | Pedal Forc | e _{Max} | Avg | Comments | | 1 | 61 | 52 | 15 | 12 | | | 2 | 53 | 47 | 13 | 12 | | | 3 | 61 | 47 | 15 | 12 | | ## Recovery - 30 mph Stops at 10 ft/sec² - . Clutch Depressed or Transmission in Neutral - Manually Controlled Retarder Off - . Following First Four Stops, Immediately Accelerate at Maximum Rate to 30 mph and Begin Next Stop | | Maximum | Average | Average Decel (1 | | G | |------|-------------|------------|------------------|-----|----------| | stop | Pedal Force | Pedal Ford | e Max | Avg | Comments | | 1 | 62 | 52 | 12 | 11 | | | 2 | 51 | 46 | 12 | 10 | | | 3 | 59 | 48 | 12 | 11 | | | 4 | 51 | 45 | II | 11 | | | 5 | 56 | 45 | 12 | 11 | | | Ambient Temp.: 7 1 | Wind Speed: <u>2-4</u> | Direction: 120 | |--------------------|------------------------|----------------| | Comments | | | | | | | | | | | ## 10.3 Appendix 3 ## FMVSS 121 Freightliner 6x4 Straight Truck Test Sequence | <u>Sequence</u> | <u>Test</u> | Page | |-----------------|---|---| | 1 | Burnish. | A3-1A & B | | 2 | Stability and control test at GVWR. | A3-2 | | 3 | Stability and control test at LLVW. | A3-3 | | 4 | Manual Brake Adjustment Allowed. | | | 5 | Service brake stopping distance test at GVWR. | A3-5 | | | | | | 6 | Emergency brake stopping distance test for single u Primary system failure. Secondary system failure. | nit truck only at GVWR.
A3-6A
A3-6B | | 7 | · Primary system failure. | A3-6A | | | Primary system failure.Secondary system failure. | A3-6A | All 9 steps in this sequence were performed at VRTC | Vehicle: Freightliner 6x4 Straight Truck | Vehicle: | Freightliner | 6x4 Straight | Truck | |--|----------|--------------|--------------|-------| |--|----------|--------------|--------------|-------| | BURNISH TEST WEIGHT | |---------------------| | Axle I: 12010 | | Axle 2: 40180 | | Axle 3: | | | | Driver #1: R Heberling | Date: 9-13-96 | Odo. Start: 23827.0 | End: 24130.1 | |------------------------|---|-------------------------|---------------------| | Driver #2: R Heberling | Date: 9-14-96 | Odo. Start: 24130.2 | End: <u>24334,5</u> | | Driver #3: | Date: | _ Odo. Start: | End: | | | | | | | Driver #4: | Date: | _ Odo . Start: | End: | | | | | | | | Test Start | Test Finish | | | Date/Time | <u>9-13-96 1556 </u> | Date/Time: 9-14-96 2218 | | | Odometer | 23827.0 | Odometer: 24334.5 | | #### TEST SPECIFICATIONS: - **500** Snubs - Snubs are 40 to 20 mph - 10 fps' Decel Rate in Gear Appropriate for Driving at 40 mph - I Mile Interval (1.5 miles if needed to reach speed) - . Record IBT Every 25th Snub - Manually Controlled Retarders Off - Driver Breaks Only After 25 Snub Sequence - Brakes May Be Adjusted up to 3 times During Burnish | | ${ m I\!L}$ | 1R | 2L | 2R | 3L | 3R | |---------|-------------|----|----|----|----|----| | Initial | _ | - | _ | - | - | _ | | 1st | | | | | | | | 2nd | <u></u> | | - | - | - | _ | | 3rd | | | - | - | - | _ | | Final | _ | _ | - | - | - | - | | | | | | | | | Adjustment Levels | Snub# | Initial | Average | Decel | Initial Brake Temperatures °F | | | | | Ambient | Comments | Driver | Time | | |-------|--------------|-------------------------|--|-------------------------------|-----|-----|-----|-----|---------|----------|--------------|----------|--------| | | Speed
mph | Cntrl Press. (Optional) | fps² | 1L | 1R | 2L | 2R | 3L | 3R | Temp °F | Comments | Initials | 111116 | | i | 40 | | <u> </u> | 75 | 71 | 69 | 69 | 70 | 70 | 59 | | | 1556 | | 25 | 40 | | | 332 | 330 | 342 | 341 | 374 | 409 | 59 | | | 1636 | | 50 | 40 | | | 335 | 364 | 340 | 372 | 449 | 516 | 59 | <u> </u> | | 1716 | | 75 | 40 | | | 342 | 405 | 354 | 380 | 483 | 543 | 59 | break | | 1758 | | 100 | 40 | | | 339 | 395 | 327 | 347 | 448 | 502 | 58 | | | 1858 | | 125 | 40 | | | 348 | 413 | 340 | 355 | 474 | 532 | 58 | | 1 | 1938 | | 150 | 40 | | | 350 | 420 | 332 | 343 | 476 | 575 | 57 | lunch | | 2018 | | 175 | 40 | | | 336 | 387 | 292 | 301 | 420 | 462 | 55 | . | | 2130 | | 200 | 40 | | | 359 | 414 | 311 | 324 | 460 | 513 | 54 | | | 2210 | Vehicle: Freightliner_6x4 Straight Truck | Snub # Speed Cntrl Press. mph (Optional) | - | Decel | Initial Brake Temperatures °F | | | | | Ambient | Comments | Driver | T: | | | |--|------------------|-------|-------------------------------|-----|-----|-----|-----|---------|----------|----------------|--------------|--|------| | | fps ² | 1L | 1R | 2L | 2R | 3L | 3R | Temp °F | Comments | ments Initials | Time | | | | 225 | 40 | | | 369 | 424 | 312 | 330 | 471 | 536 | 52 | break
| | 2250 | | 250 | 40 | | | 369 | 401 | 288 | 303 | 444 | 502 | 53 | | | 2347 | | 275 | 40 | | | 381 | 416 | 295 | 314 | 461 | 528 | 52 | | <u> </u> | 2026 | | 300 | 40 | | 1 | 380 | 420 | 290 | 306 | 464 | 527 | 52 | end of shift | † | 0107 | | 325 | 40 | | <u> </u> | 366 | 387 | 265 | 275 | 356 | 397 | 62 | | | 1638 | | 350 | 40 | | | 392 | 416 | 287 | 304 | 434 | 485 | 62 | | <u> </u> | 1717 | | 375 | 40 | | | 388 | 418 | 284 | 304 | 450 | 510 | 62 | | <u> </u> | 1757 | | 400 | 40 | | | 379 | 400 | 283 | 303 | 455 | 516 | 62 | | | 1837 | | 425 | 40 | | | 389 | 418 | 287 | 308 | 467 | 531 | 61 | break | | 1916 | | 450 | 40 | | | 377 | 396 | 278 | 276 | 414 | 467 | 60 | | <u> </u> | 2054 | | 475 | 40 | ··· | | 394 | 410 | 293 | 305 | 475 | 534 | 60 | | | 2135 | | 500 | 40 | | | 384 | 400 | 281 | 302 | 472 | 536 | 58 | | | 2215 | | Comments Refueled Snub 300 ODO 24130.1 Snub 500 ODO 24334.5 Brake squeal. Light rain snub 426, track damp | | |--|----| | Snub 500 ODO 24334 | .5 | | | | | Brake squeal. Light rain snub 426, track damp | | | | | | | | | | | | | | ## STABILITY & CONTROL TEST DATA SHEET | | | | <u>ner 6x4Str</u>
D | | <u>k</u>
<u>serv</u> er: | |-------------|--|---|---|--|-----------------------------| | | | | _ | □ GVWR | □ LLVW | | TEST S | <u>PECIFICA</u> | TIONS: | | | | | | Max. Dr75% ofBrakingIBT 150Clutch IFull BraVehicle | Max. Drive
Runs at 30
to 200 °F
Depress or
alke Applica
Within Lar | h Speed (near
ye-Through Sp
) mph or 75%
Transmission
ation | eed (nearest volume of Max. Drive-
in Neutral | | | Stop
No. | Speed (mph) | Apply
Time
(sec) | Approx. Dist. Out of Lane (ft) | No.
Markers
Hit | Comments | | 1 | 26.1 | 0.15 | 0 | 0 | | | 2 | 26.1 | 0.15 | 0 | 0 | | | 3 | 25.9 | 0.10 | 0 | 0 | | | 4 | 26.0 | 0.10 | 0 | 0 | | | | | | | | O Direction: 64 | ## STABILITY & CONTROL TEST DATA SHEET | Date: | 10-3-96 | | Straight Tru Driver: | Lyle | R ⊠LLVW | Observer: | _ | |-------------|----------------|----------------------------------|-----------------------|----------------------|------------------|-----------------------|---| | | | | | □ GVWI | R ⊠LLVW | | | | TEST S | SPECIFICA | TIONS: | | | | | | | | Check T | ire Pressur | re. | | | | | | | | | | est whole mpl | n): | | | | | | _ | - | ed (nearest wh | | | | | | | |) mph or 75% | Max. Drive-T | hrough Speed: 25 | mph | | | | | to 200 °F | | · N 1 | | | | | | | Depress Or
ike Applica | Transmission | in Neutrai | | | | | | | Within Lan | | | | | | | | . Manuall | y Controlle | ed Retarder | ON | | OFF_ √ | | | | | | | - | | <u> </u> | | | | Τ | Γ | <u> </u> | - 1 | | | | | Ston | Smood | Apply | Approx. Dist. Out | No. | | | | | Stop
No. | Speed (mph) | Time | of Lane | Markers | | Comments | | | 110. | (IIIpii) | (sec) | (ft) | Hit | | | | | 1 | 26.6 | 0.10 | 0 | 0 | | | | | 2 | 26.0 | 0.10 | 0 | 0 | | | | | 3 | 26.3 | 0.10 | 0 | 0 | | | | | 4 | 25.8 | 0.10 | 0 | 0 | | | | | Ambient | t Tomp : 5 | 5 | W | ind Speed: n/a | | Direction: <u>n/a</u> | | | Amorem | <u>د.</u> remp | <i>J</i> | *** | ша Бреса. <u>тва</u> | • | | | | Comme | nts Max | lrive_throug | gh_33_mph_m | ax brake throu | gh_32_mph | | | | | | | | | | | | #### SERVICE BRAKE STOPPING TEST | Date: | 10-4-96 | | Driver: | | | _ Observer: | | |-------|--|---|---|-----------------|--|---------------|---------------------------------| | | | | | □ GVWR | □LLVW | | | | EST S | PECIFICATION | <u>S:</u> | | | | | | | | . Check Tire Pres. • 60 mph Service . IBT 150 to 200 • Clutch Depresse . Brakes Can Be • Vehicle in Cent . Manually Cont | Brake Stop F ed or Trans Modulated er of Lane | mission in
at Stat
rder. ON
N / | A | rvice Brake Sto | _ | | | Stop | Application
Pressure | Speed
(mph) | Decel (ft/sec²) | Stop Dist. (ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 104 | 60.3 | 15 | 300.7 | 298 | yes | no | | 2 | 100 | 60.5 | 15 | 306.0 | 301 | yes | no | | 3 | 100 | 60.0 | 14 | 304.9 | 305 | yes | no | | 4 | 100 | 60.2 | 14 | 301.3 | 299 | yes | no | | 5 | 104 | 60.1 | 15 | 286.3 | 285 | yes | no | | 6 | 102 | 60.2 | 15 | 293.2 | 291 | yes | no | | | t Temp.: <u>35</u> | | | | | Direction: 49 | | ## EMERGENCY BRAKE STOPPING TEST | V e h <u>i</u>
Date: | <u>c 1 e : Freig</u> l
10-4-96 | htliner 6x4 | Straight T
Driv | ruck
er:&
⊠GVWR | □LLVW | _ Observer: | | |-------------------------|--|---|-------------------------------------|-----------------------|--------------------------------|---------------|---------------------------------| | TEST S | PECIFICATION | IS: | | | | | | | | • Check Tire Pre • 60 mph Service • IBT 150 to 200 • Clutch Depresse • Brakes Can Be • Vehicle in Cent • Manually Cont | e Brake Sto
°F
ed or Trans
Modulated
er of Lane | smission in
at Start
rder. ON | Primary Syst | em Failure | OFF <u>√</u> | | | | | | 60 mph | ormph Eme | rgency Brake S Corrected | tops | | | Stop | Application
Pressure | Speed
(mph) | Decel
(ft/sec ²) | Stop Dist.
(ft) | Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 100 | 60.3 | 9 | 469.1 | 464 | yes | no | | 2 | 100 | 59.5 | 9 | 478.2 | 486 | yes | no | | 3 | 100 | 60.5 | 8 | 526.3 | _518 | yes | no | | 4 | 102 | 60.1 | 9 | 495.9 | 494 | yes | no | | 5 | 100 | 60.7 | 9 | 497.6 | 486 | yes | no | | 6 | 98 | 59.8 | 9 | 503.9 | 507 | yes | no | | Ambient
Commen | | | _ Wind Spo | eed: <u>4-6</u> | 1 | Direction: 70 | | #### EMERGENCY BRAKE STOPPING TEST | V e h | i c l e : Freightliner 6x4 Straig | ght Truck | | | | |-------|------------------------------------|---------------|--------|-----------|--| | Date: | _10-4-96 D | river:_Lyle | | Observer: | | | | _ | □ GVWR | □ LLVW | | | | TEST | SPECIFICATIONS: | | | | | | | . Check Tire Pressure | | | | | | | • 60 mph Service Brake Stops | | | | | | | . IBT 150 to 200 °F | | | | | | | • Clutch Depressed or Transmission | on in Neutral | | | | | | . Brakes Can Be Modulated | | | | | | | • Vehicle in Center of Lane at Sta | rt | | | | | | . Manually Controlled Retarder. | ON | | OFF 🗸 | | Secondary System Failure 60 mph or-mph Emergency Brake Stops | | | _ | OU III DIN | O | Bone, Branco o. | | | |------|-------------------------|-------------|--------------------|--------------------|--|---------------|---------------------------------| | Stop | Application
Pressure | Speed (mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected
Stopping
Distance
per SAE
J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 94 | 61.0 | 12 | 365.4 | 354 | yes | no | | 2 | 99 | 60.5 | 12 | 342.9 | 337 | yes | no | | 3 | 100 | 60.7 | 12 | 350.9 | 343 | yes | no | | 4 | 99 | 60.5 | 12 | 347.2 | 341 | yes | no | | 5 | 99 | 59.9 | 12 | 346.6 | 348 | yes | no | | 6 | 100 | 60.5 | 12 | 342.0 | 336 | yes | no | | Ambient Temp.: 46 | Wind Speed: <u>8-12</u> | Direction: <u>76</u> | | |-------------------|-------------------------|----------------------|--| | comments | | | | | | | | | | | | | | ## SERVICE BRAKE STOPPING TEST | V e h i c | <u> 1 e : Freight</u> line | er <u>6x4 S t</u> | raight | Truck | | | | |-----------|--|--|-------------------------------------|-------------------------|--|-------------------------|---------------------------------| | Date: | 10-5-96 | | Driver | : <u>Lyle</u>
□ GVWR | | - Observer: | | | TEST SI | PECIFICATION | NS: | | | | | | | | Check Tire Pre 60 mph Service IBT 150 to 200 Clutch Depresse Brakes Can Be Vehicle in Cent Manually Cont | e Brake Sto
F
ed or Trans
Modulated
er of Lane | smission in
at Start
rder. ON | : | rvice Brake Sto | OFF <u>√</u>
-
ps | | | Stop | Application
Pressure | Speed
(mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected
Stopping
Distance
per SAE
J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 106 | 60.1 | 18 | 235.2 | 234 | yes | no | | 2 | 108 | 60.1 | 17 | 232.9 | 232 | yes | no | | 3 | 106 | 60.2 | 17 | 236.4 | 235 | yes | no | | 4 | 105 | 59.9 | 17 | 228.5 | 229 | yes | no | | 5 | 106 | 60.4 | 18 | 232.6 | 230 | yes | no | | 6 | 105 | 59.8 | 18 | 228.8 | 230 | yes | no | | | Temp.: <u>35</u> | | | | I | Direction: <u>346</u> | | #### EMERGENCY BRAKE STOPPING TEST | V e h i c l e : Freightliner 6x4 Straight T r u c k Date: 10-5-96 Driver: Lyle GVWR LLVW | | | | | | Observer: | | |--
--|--|--------------------|--------------------|--|---------------------|---------------------------------| | TEST S | PECIFICATION | IS: | | | | | | | | Check Tire Pre 60 mph Service IBT 150 to 200 Clutch Depresse Brakes Can Be Vehicle in Cent Manually Cont | e Brake Sto
Fed or Trans
Modulated
er of Lane | at Start | Primary Syste | | OFF <u>√</u>
ops | | | stop | Application Pressure | Speed
(mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 97 | 59.9 | 17 | 232.4 | 233 | yes | wheel 6 | | 2 | 98 | 59.8 | 18 | 234.9 | 236 | yes | wheel 5 | | 3 | 97 | 60.3 | 18 | 232.4 | 230 | yes | wheel 5 | Ambient Temp.: 35 Wind Speed: 1-2 Direction: 308 Comments 226.7 227.4 227.5 225 227 227 yes ves yes wheel 5 wheel 5 wheel 5 & 6 97 99 99 4 5 60.2 60.1 60.1 18 18 18 #### EMERGENCY BRAKE STOPPING TEST | Vehicle: Freightliner 6x4 Str | aight Truck | | | |--|---------------------|--------|-------------| | Date: <u>10-5-96</u> | Driver: <u>Lyle</u> | | — Observer: | | | □ GVWR | □ LLVW | | | TEST SPECIFICATIONS: | | | | | • Check Tire Pressure | | | | | 60 mph Service Brake Stops | | | | | . IBT 150 to 200 °F | | | | | Clutch Depressed or Transmiss: | ion in Neutral | | | | Brakes Can Be Modulated | | | | | . Vehicle in Center of Lane at St | art | | | | Manually Controlled Retarder. | ON | | OFF ✓ | | Ž | N/A | | | Secondary System Failure 60 mph or-mph Emergency Brake Stops | | ov inpit ofinpit Emergency brake Stops | | | | | | | | | |------|--|----------------|---------------------------------|--------------------|--|---------------|---------------------------------|--|--| | stop | Application
Pressure | Speed
(mph) | Decel
(ft/sec ²) | Stop Dist.
(ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | | | 1 | 97 | 60.7 | 11 | 346.4 | 338 | | no | | | | | 97 | 61.2 | IO | 358.2 | 344 | | no | | | | 3 | 98 | 60.6 | 11 | 348.3 | 341 | yes | no | | | | 4 | 98 | 60.8 | 11 | 349.2 | 340 | yes | no | | | | 5 | 101 | 60.2 | II | 334.2 | 332 | yes | no | | | | 6 | 99 | 60.1 | 11 | 329.1 | 328 | yes | | | | | Ambient Temp.: 41 | Wind Speed: <u>3-4</u> | Direction: 108 | | |-------------------|------------------------|----------------|--| | Comments | - | | | | | | | | | | | | | ## 10.4 Appendix 4 # FMVSS 121 - Peterbilt 6x4 Straight Truck Test Sequence | Sequence | <u>Test</u> | Page | |----------|---|--| | 1 | Burnish. | A4-1A & B | | 2 | Stability and control test at GVWR. | A4-2 | | 3 | Stability and control test at LLVW. | A4-3 | | 4 | Manual Brake Adjustment Allowed. | | | 5 | Service brake stopping distance test at GVWR. | A4-5 | | 6 | Emergency brake stopping distance test for single Primary system failure. Secondary system failure. | unit truck only at GVWR.
A4-6A
A4-6B | | 7 | Manual Brake Adjustment Allowed. | | | 8 | Service brake stopping distance test at LLVW. | A4-8 | | 9 | Emergency brake stopping distance test at LLVW. Primary system failure. Secondary system failure. | A4-9A
A4-9B | All 9 steps in this sequence were performed at VRTC. Vehicle: Peterbilt 6x4 Straight Truck BURNISH TEST WEIGHT Axle 1: 19990 Axle 2: 40050 tandem Axle 3: | Driver #1: R Heberling Driver #2: R Heberling | | Odo. Start: <u>3048</u>
Odo. Start: <u>3378</u> | End: 3378
End: 3559 | |---|--------------|--|------------------------| | Driver #3: | Date: | Odo. Start: | End: | | Driver #4: | Date: | Odo. Start: | End: | | | Test Start | Test Finish | | | Date/Time: | 10-3-96 1400 | Date/Time: 1 0-4-96 2 110 | | | Odometer: | 3048 | Odometer: 3559 | | - 500 Snubs - Snubs are 40 to 20 mph - 10 fps2 Decel Rate in Gear Appropriate for Driving at 40 mph - I Mile Interval (I .5 miles if needed to reach speed) - Record IBT Every 25th Snub - Manually Controlled Retarders Off - Driver Breaks Only After 25 Snub Sequence - Brakes May Be Adjusted up to 3 times During Burnish | Initial | IL | Ad
1R | ljustment
2L | Levels 2R | 3L | 3R | |---------|----|----------|-----------------|-----------|----|----| | 1st | _ | _ | - | | ~ | | | 2nd | - | _ | _ | _ | _ | _ | | 3rd | | | | | | | | Final | _ | _ | _ | _ | _ | _ | | Initial Average Snub # Speed Cntrl Press. | Decel | Initial Brake Temperatures °F | | | | | Ambient | | Driver | T | | | | |---|--------------|-------------------------------|------------------|-----|-----|-----|---------|-----|--------|---------|---------------------------------------|----------|------| | Siluo # | Speed
mph | Cntrl Press. (Optional) | fps ² | 1L | 1R | 2L | 2R | 3L | 3R | Temp °F | Comments | Initials | Time | | 1 | 40 | | | 68 | 73 | 69 | 68 | 69 | 70 | 50 | | | 1359 | | 25 | 40 | | | 242 | 240 | 386 | 376 | 389 | 398 | 51 | · · · · · · · · · · · · · · · · · · · | | 1436 | | 50 | 40 | | | 248 | 244 | 440 | 430 | 467 | 474 | 52 | | | 1515 | | 75 | 40 | | | 260 | 249 | 467 | 451 | 493 | 494 | 52 | | | 1554 | | 100 | 40 | | i | 260 | 245 | 464 | 452 | 496 | 496 | 53 | · | | 1632 | | 125 | 40 | | | 266 | 247 | 464 | 457 | 496 | 496 | 53 | break | | 1712 | | 150 | 40 | | | 252 | 233 | 414 | 415 | 449 | 463 | 53 | | | 1818 | | 175 | 40 | | | 256 | 235 | 449 | 453 | 492 | 499 | 51 | | | 1851 | | 200 | 40 | | | 256 | 234 | 449 | 459 | 499 | 520 | 47 | | | 1931 | Vehicle: Peterbilt 6x4 Straight Truck | Initial Average | _ | Decel | Initial Brake Temperatures °F | | | | | Ambient | Comments | Driver | Time | | | |-----------------|--------------|---------------------------------------|-------------------------------|-----|-----|-----|-----|---------|----------|---------|--------------|----------|--------| | Snub# | Speed
mph | Cntrl Press. (Optional) | fps² | IL | 1R | 2L | 2R | 3L | 3R | Temp °F | Comments | Initials | | | 225 | 40 | | | 246 | 233 | 444 | 440 | 488 | 502 | 46 | lunch | | 2010 | | 250 | 40 | | , | 232 | 199 | 404 | 390 | 439 | 449 | 43 | | | 2124 | | 275 | 40 | _ | | 212 | 184 | 405 | 408 | 456 | 470 | 42 | | | 2203 | | 300 | 40 | | | 237 | 205 | 447 | 446 | 490 | 511 | 41 | | | 2242 | | 325 | 40 | | | 244 | 211 | 457 | 452 | 499 | 516 | 40 | end of shift | | 2322 | | 350 | 40 | | | 249 | 211 | 380 | 366 | 390 | 400 | 55 | | | 1631 | | 375 | 40 | | | 261 | 225 | 455 | 440 | 483 | 493 | 54 | | | , 1709 | | 400 | 40 | | | 263 | 230 | 468 | 456 | 496 | 510 | 54 | | | 1747 | | 425 | 40 | · · · · · · · · · · · · · · · · · · · | | 266 | 230 | 466 | 463 | 503 | 521 | 53 | break | | 1828 | | 450 | 40 | | | 247 | 204 | 392 | 383 | 425 | 445 | 50 | | | 1943 | | 475 | 40 | · · · · · · | | 241 | 202 | 440 | 426 | 482 | 499 | 48 | | | 2021 | | 500 | 40 | | | 241 | 194 | 443 | 424 | 482 | 503 | 47 | end | | 2101 | | Comments Refueled | Snub 323 | | | | |-------------------|----------|--|--|--| | | | | | | | • | | | | | | | | | | | | • | #### STABILITY & CONTROL TEST DATA SHEET | | | | Truck Di | | | Observer: | |-------------|---|---|--|-----------------------|-----------------------------------|-----------------------| | | | | | | R □ LLVW | | | ΓEST S | <u>PECIFICA</u> | TIONS: | | | | | | | 75% of Braking IBT 150 Clutch D Full Bra Vehicle | ive-Throug
Max. Driv
Runs at 30
to 200 °F
Depress or
ke Applica
Within Lar | h Speed (near
e-Through Sp
) mph or 75%
Transmission
ation | 6 Max. Drive-T | ole mph): 24 mph
hrough Speed: | _ OFF <u>√</u> | | Stop
No. | Speed
(mph) | Apply
Time
(sec) | Approx. Dist. Out of Lane (ft) | No.
Markers
Hit | | Comments | | 1 | 24.4 | 0.10 | 0 | 0 | | | | 2 | 24.0 | 0.10 | 0 | 0 | | | | 3 | 24.3 | 0.15 | 0 | 0 | | | | 4 | 24.2 | 0.10 | 0 | 0 | | | | | | | | | | Direction: <u>170</u> | ### STABILITY & CONTROL TEST DATA SHEET | Date: 10-7-96 | | V e h i c l e : Peterbilt 6x4 Straight T r u c k | | | | | | | |
--|---|--|--------|-------------------|----------|--|-----------------------|--|--| | • Check Tire Pressure • Max. Drive-Through Speed (nearest whole mph): • 75% of Max. Drive-Through Speed (nearest whole mph): • Braking Runs at 30 mph or 75% Max. Drive-Through Speed: 24 mph . IBT 150 to 200 °F • Clutch Depress or Transmission in Neutral • Full Brake Application • Vehicle Within Lane at Start • Manually Controlled Retarder ON OFF ✓ Stop No. Speed (mph) Time (sec) Dist. Out of Lane (ft) Markers Hit 1 24.3 0.10 0 0 0 2 24.1 0.15 0 I 0 3 24.3 0.15 0 0 4 24.3 0.15 0 0 Ambient Temp.: 60 Wind Speed: 5-7 Direction: 137 | Date: | 10-7-96 | | D | river: 8 | | Observer: | | | | • Max. Drive-Through Speed (nearest whole mph): • 75% of Max. Drive-Through Speed (nearest whole mph): • Braking Runs at 30 mph or 75% Max. Drive-Through Speed: 24 mph . IBT 150 to 200 °F • Clutch Depress or Transmission in Neutral • Full Brake Application • Vehicle Within Lane at Start • Manually Controlled Retarder ON OFF ✓ Stop No. OFF ✓ Stop No. OFF ✓ Apply Time (sec) I Comments • Hit (ft) OI O 2 24.1 0.15 O I O 3 24.3 0.15 0 0 Ambient Temp.: 60 Wind Speed: 5-7 Direction: 137 | TEST S | <u>PECIFICA</u> | TIONS: | | | | | | | | Stop No. Speed (mph) Apply Time (sec) Dist. Out of Lane (ft) No. Markers Hit Comments 1 24.3 0.10 0 0 2 24.1 0.15 0 Image: Output of Lane (ft) 3 24.3 0.15 0 0 4 24.3 0.15 0 0 Ambient Temp.: 60 Wind Speed: 5-7 Direction: 137 | Max. Drive-Through Speed (nearest whole mph): 75% of Max. Drive-Through Speed (nearest whole mph): Braking Runs at 30 mph or 75% Max. Drive-Through Speed: 24 mph IBT 150 to 200 °F Clutch Depress or Transmission in Neutral Full Brake Application Vehicle Within Lane at Start | | | | | | | | | | 2 24.1 0.15 0 I 0 3 24.3 0.15 0 0 4 24.3 0.15 0 0 Ambient Temp.: 60 Wind Speed: 5-7 Direction: 137 | 1 1 | | Time | Dist. Out of Lane | Markers | | Comments | | | | 3 24.3 0.15 0 0 4 24.3 0.15 0 0 Ambient Temp.: 60 Wind Speed: 5-7 Direction: 137 | 1 | 24.3 | 0.10 | 0 | 0 | | | | | | 4 24.3 0.15 0 0 Ambient Temp.: 60 Wind Speed: 5-7 Direction: 137 | 2 | 24.1 | 0.15 | 0 | I 0 | | | | | | Ambient Temp.: 60 Wind Speed: 5-7 Direction: 137 | 3 | 24.3 | 0.15 | 0 | 0 | | | | | | | 4 | 24.3 | 0.15 | 0 | 0 | | | | | | The same was a superior of the same | | | | | | | Direction: <u>137</u> | | | ### SERVICE BRAKE STOPPING TEST Vehicle: Peterbilt 6x4 Straight Truck | Date: | 10-7-96 | | Driver: | Lyle | | _ Observer: | | |--------|--|---|---------------------------------|--------------------|--|----------------------------------|---------------------------------| | | | | | □ GVWR | | | | | TEST S | SPECIFICATION | NS: | | | | | | | | Check Tie Pre 60 mph Service IBT 150 to 200 Clutch Depress Brakes Can Be Vehicle in Cent Manually Cont | e Brake Sto
O°F
ed or Trans
Modulated
ter of Lane | smission in at Stat arder. ON | | rvice Brake Sto | OFF <u>√</u>
–
• ps | | | Stop | Application
Pressure | Speed (mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected
Stopping
Distance
per SAE
J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 104 | 60.4 | 12 | 315.0 | 311 | yes | no | | 2 | 95 | 60.7 | 12 | 340.5 | 333 | yes | no | | 3 | 103 | 60.3 | 14 | 286.7 | 284 | yes | no | | 4 | 104 | 60.4 | 14 | 283.0 | 279 | yes | no | | 5 | 96 | 60.3 | 14 | 295.0 | 292 | yes | no | | 6 | 104 | 60.1 | 13 | 331.6 | 330 | yes | no | | Ambien | t Temp.: <u>68</u> | | _ Wind Spe | eed: <u>8-1 1</u> | | Direction: 13 1 | | | V | ehicle: | Peterbilt 6x4 Str | raight Truck | | | | | | |---|---------|-------------------|---------------|------------------------|-------------|-----------------|----------------|------------------| | Г | ate: | 10-7-96 | - | Driver: | _Lyle | | Observer: | | | | | | | | □ GVWR | □ LLVW | | | | 7 | | CDECIEICATION | MG. | | | | | | | 1 | E51 | SPECIFICATION | <u> </u> | | | | | | | | | . Check Tie Pre | essure | | | | | | | | | • 60 mph Servic | e Brake Sto | ps | | | | | | | | . IBT 150 to 200 |)°F | | | | | | | | | • Clutch Depress | ed or Trans | smission in | Neutral | | | | | | | . Brakes Can Be | e Modulated | | | | | | | | | • Vehicle in Cent | ter of Lane | at Start | | | | | | | | . Manually Cont | trolled Retai | rder. ON | | | OFF 🗸 | | | | | - | Primary Sys | tem Failure | | | | | | | | 60 mph | or-mph Eme | rgency Brake St | tops | | | Ī | | | | | | Corrected | | | | ١ | | | | | Ì | Stopping | 1 | Wheel Lock- | | 1 | ٥. | Application | Speed | Decel | Stop Dist. | Distance | In 12 ft Lane | i I | | 1 | Stop | Pressure | (mph) | (ft/sec ²) | (ft) | 1 | III 12 It Lane | up
Indication | | 1 | | 1 | 1 ` ' ′ | 1 ` ′ | 1 | per SAE | | Indication | | Stop | Application
Pressure | Speed (mph) | Decel
(ft/sec ²) | Stop Dist.
(ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | |------|-------------------------|-------------|---------------------------------|--------------------|--|---------------|---------------------------------| | 1 | 101 | 59.7 | 12 | 334.7 | 338 | yes | no | | 2 | 100 | 59.9 | 12 | 349.6 | 351 | yes | no | | 3 | 93 | 60.1 | 12 | 324.8 | 324 | yes | no | | 4 | 101 | 60.0 | 12 | 327.3 | 327 | yes | no | | 5 | 101 | 60.2 | 11 | 353.4 | 351 | yes | no | | 6 | 101 | 60.4 | 10 | 358.2 | 353 | yes | no | | Ambient Temp.: <u>72</u> | Wind Speed: 7-9 | Direction: 207 | |--------------------------|-----------------|----------------| | Comments | | | | | | | | V e h_ | icle: Ρε | terbilt 6x4 | Straight T | r u c k | | | | | |---------|------------------------------------|-------------|------------------------|-------------------------|-------------------|------|------------------|------------------| | Date: | 10-8-96 | | Driver: | <u>Lyle</u>
⊠ GVWR | nIIV | Ol | bserver: | | | | | | | M GAMK | OLLV | w | | | | TEST SE | TEST SPECIFICATIONS: | | | | | | | | | | Cl. I. T. D | | | | | | | | | | Check Tire Pre 60 mph Service | | ne | | | | | | | | IBT 150 to 200 | | 93 | | | | | | | | Clutch Depresso | | mission in | Neutral | | | | | | | Brakes Can Be
Vehicle in Center | | at Start | | | | | | | | Manually Contr | | | | | OFF | <u> </u> | | | | | | N/A | λ | Secondary Sy | v stem Fai | lure | | | | | | | | ormph Eme | | | | | | | | | | | Corre | cted | | | | | Application | Speed | Decel | Stop Dist. | Stop | - | 12 ft Lane | Wheel Lock- | | stop | Pressure | (m p h) | (ft/sec ²) | (ft) | Dista
per S | | 12 It Lane | up
Indication | | _ | | | | | J29 | | | | | 1 | 94 | 59.9 | 12 | . 39 | 5.8 | 397 | yes | no | | 2 | 99 | 60.6 | 12 | 414.8 | 40 | 17 | yes | no | | 3 | 100 | 60.1 | 12 | 376.5 | 37 | 75 | yes | no | | 4 | 99 | 59.7 | 12 | 360.1 | 36 | 54 | yes | no | | 5 | 99 | 59.9 | 12 | 363.6 | 36 | i5 | yes | no | | 6 | 100 | 60.4 | 12 | 2 30 | 59.5 | 365 | yes | no | | | | | Winda | 1 0 10 | | D: | -4: CW | | | Ambient | Temp.: <u>54</u> | | _ wmu Spe | eea: <u>y-10</u> | | Dire | CHOII: <u>SW</u> | | | Commen | ts
 | | | | | | | ### SERVICE BRAKE STOPPING TEST | Vehicle: | Peterbilt 6x4 Str | aight Truck | | | | | | |----------|--|---|---|------------------------|--|----------------|---------------------------------------| | Date: | 10-8-96 | | Driver: | | | Observer: | | | | | | | □ GVWR | □ LLVW | | | | TEST | SPECIFICATION | NS: | | | | | | | | Check Tire Pre 60 mph Service IBT 150 to 200 Clutch Depresse Brakes Can Be Vehicle in Cent Manually Cont | e Brake Sto
°F
ed or Trans
Modulated
er of Lane | smission in
at Start
rder. ON
N / | A | | - | | | . — | 1 | <u> </u> | 60 mp | h ormph Sei | vice Brake Stop | ps
i | · · · · · · · · · · · · · · · · · · · | | Stop | Application
Pressure | Speed
(mph) | Decel
(ft/sec ²) | Stop Dist.
(ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 105 | 60.7 | 17 | 248.8 | 243 | yes | no | | 2 | 97 | 60.1 | 18 | 219.3 | 218 | yes | no | | 3 | 106 | 60.0 | 18 | 224.7 | 225 | yes | no | | 4 | 104 | 60.5 | 18 | 235.4 | 232 | yes | no | | 5 | 107 | 60.1 | 18 | 230.3 | 230 | yes | no | | 6 | 106 | 59.9 | 18 | 233.9 | 235 | yes | no | | | t Temp.: <u>56</u> | | | eed: <u>8-9</u> | Γ | Direction: 357 | | | Vehicle: | Peterbilt 6x4 Str | | | | | | | |------------------|---|---|------------------------------------|-----------------|--|---------------|---------------------------------| | Date: | 10-8-96 | | Driver: | | | Observer: | | | | | | | □ GVWR | □ LLVW | | | | TEST S | SPECIFICATION | NS: | | | | | | | | Check Tire Pre 60 mph Servic IBT 1 SO to 200 Clutch Depress Brakes Can Be Vehicle in Cent Manually Cont | ee Brake Sto
O°F
ed or Trans
Modulated
er of Lane | mission in
at Start
rder. ON | ſ <u></u> | | OFF <u>√</u> | | | | | | N/A | A | | | | | | | | | Primary Syst | em Failure | | | | | | | 60 mph | | gency Brake S | | | | stop | Application
Pressure | Speed
(mph) | Decel
(ft/sec ²) | Stop Dist. (ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
indication | | 1 | 103 | 60.4 | 15 | 265.8 | 262 | yes | | | 2 | I 103 I | 60.1 | 16 | 262.4 | 262 | ves | wheel 6 | | 3 | 103 | 60.5 | 15 | 275.2 | 271 | yes | no | | 4 | 103 | 60.1 | 15 | 261.0 | 260 | yes | no | | 5 | 104 | 59.5 | 16 | 250.4 | 255 | yes | no | | 6 | 104 | 60.1 | 17 | 248.3 | 247 | yes | no | | Ambient
Comme | Temp.: <u>56</u> | | _ Wind Spe | eed: <u>4-7</u> | 1 | Direction: 23 | | | Vehicle: | Peterbilt 6x4 Straight Truck | | | | | |----------|------------------------------|----------------------|--------|-----------|--| | Date: | 10-8-96 | Driver: _Lyle | | Observer: | | | | | _ □ GVWR | □ LLVW | | | ### **TEST SPECIFICATIONS:** - Check Tire Pressure - 60 mph Service Brake Stops - IBT 150 to 200 °F - Clutch Depressed or Transmission in Neutral - Brakes Can Be Modulated - Vehicle in Center of Lane at Start - Manually Controlled Retarder. Secondary System Failure 60 mph or-mph Em | ency Brake Stops | Stop | Application Pressure | Speed
(mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock- up Indication | |------|----------------------|----------------|--------------------|--------------------|--|---------------|----------------------------------| | 1 | 93 | 60.1 | 19 | 227.9 | 227 | yes | no | | 22 | 977 | 59.8 | 19 | 222.1 | 224 | ves | no | | 33 | 983 | 59.5 | 19 | 215.2 | 219 | yes | no | | 4 | 99 | 60.5 | 18 | 236.7 | 233 | yes | no | | 5 | 96 | 60.1 | 18 | 234.1 | 233 | yes | no | | 6 | 99 | 60.3 | 19 | 231.5 | 229 | yes | no | | Ambient Temp.: <u>58</u> | Wind Speed: 6-8 | Direction: 12 | |--------------------------|-----------------|---------------| | Comments | | | | | | | ## 10.5 Appendix 5 ### FMVSS121 - Navistar 6x4 Straight Truck Test Sequence | <u>Sequence</u> | Test | Page | |-----------------|---|---| | 1 | Burnish. | | | 2 | Stability and control test at GVWR. | A5-2 | | 3 | Stability and control test at LLVW. | A5-3 | | 4 | Manual Brake Adjustment Allowed. | | | 5 | Service brake stopping distance test at GVWR. | A5-5 | | 6 | Emergency brake stopping distance test for single up. Primary system failure. Secondary system failure. | nit truck only at GVWR.
A5-6A
A5-6B | | 7 | Manual Brake Adjustment Allowed. | | | 8 | Service brake stopping distance test at LLVW. | A5-8 | | 9 | Emergency brake stopping distance test at LLVW. Primary system failure. Secondary system failure. | A5-9A
A5-9B | Step 1 was performed by the supplier. The other 8 steps in this sequence were performed at VRTC. ### STABILITY & CONTROL TEST DATA SHEET | V e h | i c l e : | Navistar_ | 6x4_Straight_ | Truck | Observer: | |-------------|---|--|---|---|-------------------| | Date. | 10-51-70 | | | □ GVV | VR □LLVW | | TEST : | SPECIFICA' | TIONS: | | | | | | • 75% of . Braking 1 . IBT 150 . Clutch D . Full Brad • Vehicle | ive-Throug Max. Driv Runs at 30 to 200 °F Depress or ke Applica Within Lan | h Speed (near
ve-Through Sp
) mph or 75%
Transmission
ation | eed (nearest Max. Drive in Neutral ON_ | • ' | | stop
NO. | Speed (mph) | Apply
T i e
(sec) | Approx. Dist. Out of Lane (ft) | NO.
Markers
Hit | Comments | | 1 | 26.0 . | 0.14 | 0 | 0 | | | 2 | 26.2 | 0.14 | 0 | 0 | | | 3 | 26.2 | 0.14 | 0 | 0 | | | 4 | 26.2 | 0.13 | 0 | 0 | | | | | | Win
h 34 mph, ma | | 12 Direction: 238 | ### STABILITY & CONTROL TEST DATA SHEET | Date: | 10-31-96 | | Straigh
D | river: Lyle | | Observer: | |-------------|------------------|------------------------|--------------------------------|-----------------------|----------------------|----------------| | | | | | □ GVWR | LLVW | | | TEST S | SPECIFICA | TIONS: | | | | | | | • Check T | ire Pressur | ·e | | | | | | • Max. D | rive-Throug | h Speed (nea | rest whole mph | | | | | | | | eed (nearest wh | | | | | | Runs at 30 to 200 °F | | 6 Max. Drive-Th | nrough Speed: 25 mph | ı | | | | 131 131 | Transmission | in Neutral | | | | | • Full Bra | ake Applica | ation | | | | | | | Within Lar | | ON | | NEE | | | . Manuan | y Controlle | ed Retarder | N/A ✓ | (| DFF | | | | | | , | | | | Stop
No. | Speed (mph) | Apply
Time
(sec) | Approx. Dist. Out of Lane (ft) | No.
Markers
Hit | | Comments | | 1 | 25.4 | 0.15 | 0 | 0 | | | | 2 | 25.2 | 0.14 | 0 | 0 | | | | 3 | 25.0 | 0.14 | 0 | 0 | | | | 4 | 25.2 | 0.14 | 0 | 0 | | | | Ambient | Temp.: <u>3</u> | 7 | w | ind Speed: 10-1 | 8 | Direction: 248 | | Commer | nts <u>Max d</u> | rive through | h 33 mph, ma | ax brake through | h 30 mph | | #### SERVICE BRAKE STOPPING TEST | Vehicle: | Navistar 6x4 Stra | night Truck | | | | | | |----------|--|---|---------------------|--------------------|--|---------------|---------------------------------| | Date: | <u>10-31-96</u> | | Driver: | | | Observer: | | | | | | | □ GVWR | □ LLVW | | | | TEST S | SPECIFICATION | <u>[S:</u> | | | | | | | | . Check Tire Pre • 60 mph Service . IBT 150 to 200 • Clutch Depresse . Brakes Can Be • Vehicle in Cente . Manually Cont | Brake Stop F ed or Trans Modulated er of Lane | mission in at Start | | | OFF | | | | | _ | 60 mp | h ormph Sei | rvice Brake Sto | ps | _ | | stop | Application
Pressure | Speed (mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected
Stopping
Distance
per SAE
J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 99 | 60.7 | 14 | 295.6 | 289 | yes | no | | 2 | 100 | 60.4 | 15 | 281.1 | 277 | yes | no | | 3 | 101 | 60.5 | 15 | 282.5 | 278 | yes | no | | 4 | 99 | 60.2 | 16 | 284.6 | 283 | yes | no | | S | 99 | 60.0 | 16 | 274.1 | 274 | yes | no | | 6 | 99 | 60.0 | 16 | 269.4 | 269 | yes | no | Ambient Temp.: 42 Wind Speed: 15-20 Direction: 244 Comments __ | | <u> 1 e : Navistar</u> | | ight T | <u>ruck</u> | | | | |--------|--|--|----------------------|-----------------------|--|---------------|---------------------------------| | Date: | <u> 11-1-96</u> | | Driver | : <u>Lyle</u>
GVWR | □LLVW | Observer: | | | TEST S | PECIFICATION | NS: | | | | | | | | Check Tire Pre 60 mph Service IBT 150 to 200 Clutch Depresse Brakes Can Be Vehicle in Cent
Manually Cont | e Brake Sto
F
ed or Trans
Modulated
er of Lane | at Start rder ON N/A | ✓ Primary Sys | | OFF | | | Stop | Application
Pressure | Speed
(mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | 1 | 91 | 60.1 | 10 | 376.0 | 375 | yes | по | | 2 | 90 | 60.5 | 11 | 372.9 | 367 | yes | _ no | | 3 | 90 | 60.1 | 11 | 378.3 | 377 | yes | no | | 4 | 90 | 60.0 | 10 | 367.3 | 367 | yes | по | Ambient Temp.: 33 Wind Speed: 10-12 Direction: 264 Comments 366.1 360.1 365 359 yes yes no no 60.1 60.1 11 11 5 6 90 91 | Vehicle: | Navistar 6x4 Straight Truck | <u>.</u> . | | | | |----------|-----------------------------|--------------|----------|-----------|--| | Date: | 11-1-96 | Driver: Lyle | | Observer: | | | | | □ GVWR | · DT.LVW | _ | | ### TEST SPECIFICATIONS: - Check Tire Pressure - 60 mph Service Brake Stops - IBT 150 to 200 °F - . Clutch Depressed or Transmission in Neutral - . Brakes Can Be Modulated - . Vehicle in Center of Lane at Start - . Manually Controlled Retarder ON_____OFF_____OFF_____ ### Secondary System Failure 60 mph or--mph Emergency Brake Stops | Stop | Application Pressure | Speed (mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | |------|----------------------|-------------|--------------------|--------------------|--|---------------|---------------------------------| | 1 | 93 | 60.2 | 12 | 338.4 | 336 | yes | по | | 2 | 93 | 60.3 | 12 | 333.1 | 330 | yes | no | | 3 | 97 | 60.1 | 12 | 326.5 | 325 | yes | no | | 4 | 92 | 60.4 | 11 | 336.2 | 332 | yes | no | | 5 | 93 | 60.0 | 12 | 335.7 | 336 | yes | no | | 6 | 96 | 60.1 | 12 | 333.6 | 332 | yes | l
I nó | | Comments | | |----------|--| | | | ### SERVICE BRAKE STOPPING TEST _____ Observer:_____ yes ves yes yes yes 3,4 4 3 no no V e h <u>i c l e : Navistar 6x4 Straight T r u c k</u> Date: 11-5-96 Driver: Lyle 2 3 4 5 6 103 99 102 102 101 60.2 60.1 60.2 60.0 60.4 21 21 21 21 20 | | | | | □ GVWR | □ LLVW | | | | |---------|--|---|---------------------------------|--------------------|--|---------------|---------------------------------|--| | TEST SI | PECIFICATION | NS: | | | | | | | | • | Check Tie Pre 60 mph Service IBT 150 to 200 Clutch Depress Brakes Can Be Vehicle in Cent Manually Cont | e Brake Sto
°F
ed or Trans
Modulated
er of Lane | smission in
at Start | | vice Brake Sto | OFF | | | | Stop | Application
Pressure | Speed (mph) | Decel
(ft/sec ²) | Stop Dist.
(ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | | | 1 | 95 | 60.1 | 21 | 197.6 | I 197 | yes | no | | Ambient Temp.: 48 Wind Speed: 6-8 Direction: 193 Comments 197.7 190.2 191.0 191.0 196.4 196 190 190 191 194 | Vehicle: Navistar 6x4 St
Date: 11-5-96 | <u>raight Truck</u>
Driver: & | | Observer: | | |--|----------------------------------|--------|-----------|--| | Date. 11-3-70 | □ GVWR | □ LLVW | | | | TEST SPECIFICATIONS: | | | | | | • Check Tire Pressure | | | | | | • 60 mph Service Brake . IBT 150 to 200 °F | Stops | | | | | Clutch Depressed or T | ransmission in Neutral | | | | | Brakes Can Be Modula | ated | | | | | Vehicle in Center of La | ane at Start | | | | • Manually Controlled Retarder ON_ Primary System Failure N/A_✓___ **60** mph or-mph **Emergency** Brake Stops | Stop | Application
Pressure | Speed
(mph) | Decel
(ft/sec²) | Stop Dist.
(ft) | Corrected Stopping Distance per SAE J299 | In 12 ft Lane | Wheel Lock-
up
Indication | |------|-------------------------|----------------|--------------------|--------------------|--|---------------|---------------------------------| | 1 | 92 | 60.1 | 21 | 194.8 | 194 | yes | 3,4,5,6 | | 2 | 93 | 59.9 | 16 | 200.4 | 201 | yes | 3,4,6 | | 3 | 92 | 60.1 | 21 | 196.5 | 196 | yes | 3,4,5,6 | | 4 | 93 | 59.9 | 22 | 189.7 | 190 | yes | 3,4,5,6 | | 5 | 92 | 60.1 | 22 | 192.9 | 192 | yes | 3,4,5,6 | | 6 | 93 | 60.2 | 22 | 191.1 | 190 | yes | 3,4,5,6 | | Ambient Temp.: <u>54</u> | Wind Speed: 8-9 | Direction: 208 | |--|------------------------|----------------| | Comments <u>Wheel lockups near end c</u> | of stops | | | | | | | | 11-6-96 | | Driver: | □Lyle
□GVWR | ⊠ LLVW | _ Observer: | | |--------|--|---|---------------------------------|----------------------------------|--|-------------------|--------------------------------| | EST SI | PECIFICATION | NS: | | | | | | | | Check Tire Pre 60 mph Service IBT 150 to 200 Clutch Depresse Brakes Can Be Vehicle in Cent Manually Cont | e Brake Sto
OFF
ed or Trans
Modulated
ter of Lane | smission in at Start | | | OFF | | | | | | 60 mph | Secondary Sy
or-mph Emer | stem Failure
gency Brake S | tops | | | | | | | | Corrected | | | | stop | Application
Pressure | Speed
(mph) | Decel
(ft/sec ²) | Stop Dist.
(ft) | Stopping
Distance
per SAE
J299 | In 12 ft Lane | Wheel Lock
up
Indication | | stop | | - | | 1 * | Distance
per SAE | In 12 ft Lane | up | | | Pressure | (mph) | (ft/sec ²) | (ft) | Distance
per SAE
J299 | | up
Indication | | 1 | Pressure
94 | (mph)
60.7 | (ft/sec ²) | (ft)
346.2 | Distance
per SAE
J299 | yes | up
Indication
no | | 1 2 | Pressure 94 95 | (mph)
60.7
60.2 | (ft/sec²) | 346.2
308.2 | Distance
per SAE
J299
338
306 | yes
yes | up
Indication
no
3,4 | | 2 3 | 94
95
96 | (mph)
60.7
60.2
60.3 | (ft/sec²) 11 12 12 | 346.2
308.2
286.7 | Distance
per SAE
J299
338
306
284 | yes
yes
yes | no 3,4 3,4 | | 2 3 4 | 94
95
96
93 | (mph) 60.7 60.2 60.3 60.0 | (ft/sec²) 11 12 12 13 | 346.2
308.2
286.7
298.0 | Distance per SAE J299 338 306 284 298 | yes yes yes yes | no 3,4 3,4 no | ## 10.6 Appendix 6 # FMVSS 121 - Navistar 4x2 Straight Truck w/152" WB Test Sequence | <u>Sequence</u> | <u>Test</u> | Page | | | | | |-----------------|---|--------------------------|--|--|--|--| | 1 | Burnish. | | | | | | | 2 | Stability and control test at GVWR. | A6-2 | | | | | | 3 | Stability and control test at LLVW. | A6-3 | | | | | | 4 | Manual Brake Adjustment Allowed. | | | | | | | 5 | Service brake stopping distance test at GVWR. | | | | | | | 6 | Emergency brake stopping distance test for single Primary system failure. Secondary system failure. | unit truck only at GVWR. | | | | | | 7 | Manual Brake Adjustment Allowed | | | | | | | 8 | Service brake stopping distance test at LLVW. | | | | | | | 9 | Emergency brake stopping distance test at LLVW. Primary system failure. Secondary system failure. | | | | | | Only the two brake-in-a-curve tests (#2 & #3) were performed at VRTC. All other steps in this sequence were performed by the supplier. ### STABILITY&CONTROL TEST DATA SHEET | Vehicle | : Navistar | · 4900, 4x | 2 straight tru | ck 152" WB | } | | | |--|--|--|---|--------------------------------------|------------------|--------------|-----------| | Date: | 10-10-9 | 96 | Dı | river:Lyle | | | Observer: | | | | | | ⊠GVV | VR | □LLVW | | | TEST | <u>SPECIFICA</u> | TIONS: | | | | | | | | Max. Dr75% ofBrakingIBT 150Clutch IFull BraVehicle | Max. Driv
Runs at 30
to 200 °F
Depress or
ke Applica
Within Lan | h Speed (near
ve-Through Spe
) mph or 75%
Transmission | eed (nearest b Max. Drive in Neutral | whole
-Throug | gh Speed: 27 | OFFX | | stop
NO. | Speed
(mph) | Apply
Time
(sec) | Approx. Dist. Out of Lane (ft) | NO.
Markers
Hit | | | Comments | | 1 | 27.1 | NA | 0 | 0 | | | | | 2 | 27.2 | NA | 0 | 0 | | | | | 3 | 27.3 | NA | 0 | 0 | | | | | 4 | 27.1 | NA | 0 | 0 | | | | | Ambient Temp.: Wind Speed: Direction: Comments Max drive through 36 mph, Max brake through 34 mph | | | | | | | | | | | | | | | | | ### STABILITY&CONTROL TEST DATA SHEET | Vehicle: Navistar 4900, 4x2 straight truck 152" WB Date: 10-10-96 Driver O Lybe s e r v e r : | | | | | | | | | |--|---|------------------|--------------------------------|-----------------------|----------|--|--|--| | □GVWR □LLVW |
 | | | | | | | | TEST S | PECIFICA | TIONS: | | | | | | | | Check Tire Pressure Max. Drive-Through Speed (nearest whole mph): 75% of Max. Drive-Through Speed (nearest whole mph): Braking Runs at 30 mph or 75% Max. Drive-Through Speed: 27 mph IBT 150 to 200 °F Clutch Depress or Transmission in Neutral Full Brake Application Vehicle Within Lane at Start Manually Controlled Retarder ON OFF- | stop
NO. | Speed (mph) | Apply Time (sec) | Approx. Dist. Out of Lane (ft) | NO.
Markers
Hit | Comments | | | | | 1 | 27.2 | NA | 0 | 0 | | | | | | 2 | 27.3 | NA | 0 | 0 | | | | | | 3 | 27.0 | NA | 0 | 0 | | | | | | 4 | 27.2 | N | A 0 | 0 | | | | | | | Ambient Temp.: Wind Speed: Direction: Comments Max drive through 36 mph. Max brake through 34 mph | | | | | | | | | | | | | | | | | | ## 10.7 Appendix 7 # FMVSS 121 - Navistar 4x2 Straight Truck w/148" WB with Heavy Duty Rear Axle Test Sequence | <u>Sequence</u> | <u>Test</u> | Page | |-----------------|---|--------------------------| | 1 | Burnish. | | | 2 | Stability and control test at GVWR. | A7-2 | | 3 | Stability and control test at LLVW. | A7-3 | | 4 | Manual Brake Adjustment Allowed. | | | 5 | Service brake stopping distance test at GVWR. | | | 6 | Emergency brake stopping distance test for single to Primary system failure. Secondary system failure. | unit truck only at GVWR. | | 7 | Manual Brake Adjustment Allowed | | | 8 | Service brake stopping distance test at LLVW. | | | 9 | Emergency brake stopping distance test at LLVW.Primary system failure.Secondary system failure. | | Only the two brake-in-a-curve tests (#2 & #3) were performed at VRTC. All other steps in this sequence were performed by the supplier. ### STABILITY & CONTROL TEST DATA SHEET | Vehicle: Navistar 2674, 4x2 straight truck 148" WB | | | | | | Observer | | |--|--|--|--|--|-----------|-----------|----------------| | Date: _ | 4-10-97 | | D ₁ | r iver: Lyle
GV\ □ | æ——
WR | o LLVW | Observer: | | | | | | | | | | | TEST SI | PECIFICA' | TIONS: | | | | | | | | Max. Dr 75% of Braking IBT 150 Clutch D Full Bra Vehicle | Max. Driv
Runs at 30
to 200 °F
Depress or bke Applica
Within Lan | th Speed (near
re-Through Spe
mph or 75%
Transmission in
tion
he at Start
and Retarder | ed (nearest
Max. Drive
n Neutral | whole mp | Speed: 27 | OFF | | stop
NO. | Speed
(mph) | Apply Time (sec) | Approx. Dist. Out of Lane (ft) | NO.
Markers
Hit | | | Comments | | 1 | 27.1 | NA | 0 | 0 | | | | | 2 | 27.3 | NA | 0 | 0 | | | | | 3 | 27.1 | NA | 0 | 0 | | | | | 4 | 27.2 | NA | 0 | 0 | | | | | | | | Wingh 36 mph. M | | | | Direction: 144 | ### STABILITY & CONTROL TEST DATA SHEET | | | | 2 straight tru | | | | | |-------------|---|---|---------------------------------|---|----------|--------------------------|---| | Date: | <u>4-10-9</u> 7 | 7 | D | river: <u>Lyle</u> — | | Observer: | = | | Date: | | | Driv | GVWR □ GVWR | □ LLVW | Observer: | | | TEST S | PECIFICA | TIONS: | | | | | | | | Max. Dr 75% of Braking | Max. Dri | gh Speed (near
we-Through Sp | rest whole mph)
eed (nearest who
6 Max. Drive-Thr | le mph): | МРН | | | | Clutch IFull BraVehicle | Depress or
ake Applica
Within Lar | | | | OFF | | | stop
No. | Speed (mph) | Apply Time (sec) | Approx. Dist. Out of Lane (ft) | No.
Markers
Hit | | Comments | | | 1 | 27.2 | NA | 2 | 3 | | | | | 2 | 27.5 | NA | 4 | 4 | | | | | 3 | 26.8 | NA | 2 | 3 | | | | | 4 | 25.9 | NA | 2 | 3 | | | | | Ambien | t Temp.: | 42 | Wir | nd Speed <u>: 4-6</u> | | Direction: <u>182</u> | | | | | | | Max brake throug
he normal maxim | | 29,000# for FMVSS_No.121 | | ### **10.8 APPENDIX 8** ### 10.8.1 - Roller Dynamometer Brake Force Measurement A Hans Hermann BM Roller Dynamometer was used to measure the brake retardation force produced by each test vehicle. Individual wheel brake forces were compared to the input pedal force on hydraulic braked buses, and to the treadle applied control air pressure on pneumatic braked trucks. Individual graphs of the dynamometer measured braking forces vs. the respective inputs are located in section 10.8.2. The dynamometer data provides a benchmark, for the VRTC lab, to indicate the brake force at each wheel and the balance of the whole braking system. If the vehicle does not respond as expected during a test on the track, a quick retest on the dynamometer often aids in diagnostics. This is not a test required by FMVSS No. 121. The BM Roller Dynamometer used two 24-hp (18-kW) electric motors to individually drive both the left and right wheels of the selected axle simultaneously at 2.2 mph (3.5 kph). While the driver applied an increasing force to the brake pedal to activate the brakes over the whole service range, a pedal force transducer or a treadle pressure transducer recorded the input effort, and load cells in the dynamometer measured the axle weight and the generated braking forces with respect to time. Plots were then generated to reflect the output brake force for the given input effort. The roller dynamometer test was normally run after the 500 mile initial brake burnish cycle while the test unit was still loaded to GVWR. There was negligible difference in output between drum brakes at room temperature and ones that were slightly warmed. Typically, the drum brakes were dynamometer tested at room temperature. However, the hydraulic braked buses were equipped with disc brakes, and more uniform results were obtained with slightly warmed brakes. Typically, a warming cycle for the disc brakes **consisted of** driving the vehicle on the track, and performing four to six snubs, from 40 mph to 20 mph, at a deceleration rate of 10 feet per second per second (~0.31g). In the brake force versus pedal force plots (section 10.8.2), the GMC bus plots reflect an example of the effect of the temperature difference for the given brake conditions. | 10.8.2 - Rolle | r Dynamometer - Graphs Of Brake Force Output Vs. Input | , | |----------------|---|------| | 10.8.2.1 | Four Graphs of Individual Wheel Force Output vs. Pedal Force | | | | Applied for GMC 4x2 School Bus - unit A (FMVSS 105) | A8-3 | | 10.8.2.2 | Four graphs of Individual Wheel Force Output vs. Pedal Force | | | | Applied for Freightliner 4x2 School Bus - unit B (FMVSS 105) | A8-4 | | 10.8.2.3 | Six graphs of Individual Wheel Force Output vs. Treadle Pressure | | | | Applied for Freightliner 6x4 Straight Truck - unit C (FMVSS121) | A8-5 | | 10.8.2.4 | Six graphs of Individual Wheel Force Output vs. Treadle Pressure | | | | Applied for Peterbilt 6x4 Straight Truck - unit D (FMVSS 121) | A8-6 | | 10.8.2.5 | Six graphs of Individual Wheel Force Output vs. Treadle Pressure | | | | Applied for Navistar 6x4 Straight Truck - unit E (FMVSS 121) | A8-7 | | 10.8.2.6 | Four graphs of Individual Wheel Force Output vs. Treadle Pressure | | | | Applied for Navistar 4x2 Straight Truck w/152" WB - unit F | | | | (FMVSS121) | A8-8 | | 10.8.2.7 | Four graphs of Individual Wheel Force Output vs. Treadle Pressure | | | | Applied for Navistar 4x2 Straight Truck w/148" WB & Heavy | | | | Duty Rear Axle - unit G (FMVSS 121) | A8-9 | Note: Each graph shows plots from three test runs on the BM roller dynamometer. The GMC bus has an extra set of plots showing the difference in temperature variation between room temperature, and slightly warmed brakes. # GM 4x2 Bus # Freightliner 4x2 Bus # Freightliner 6x4 Straight Truck # Peterbilt 6x4 Straight Truck # Navistar 6x4 Straight Truck # Navistar 4x2 Straight Truck 152" WB # Navistar 4x2 Straight Truck Heavy Duty Axle 148" WB ### **10.9 APPENDIX 9** Plots of Pedal Force, Vehicle Speed, and Decel vs. Time for the Two Hydraulic Braked 4x2 School Buses During the Braking-In-A-Curve Tests. ### 10.9.1 - GMC School Bus - FMVSS No. 105 | Plot BCL301 - run 1, brake-in-a-curve, loaded condition | A9-2 | |---|---| | Plot BCL302 - run 2, brake-in-a-curve, loaded condition | A9-3 | | Plot BCL303 - run 3, brake-in-a-curve, loaded condition | A9-4 | | Plot BCL304 - run 4, brake-in-a-curve, loaded condition | A9-5 | | Plot BCE601 - run 1, brake-in-a-curve, empty condition | A9-6 | | Plot BCE602 - run 2, brake-in-a-curve, empty condition | A9-7 | | Plot BCE603 - run 3, brake-in-a-curve, empty condition | A9-8 | | Plot BCE604 - run 4, brake-in-a-curve, empty condition | A9-9 | | | Plot BCL302 - run 2, brake-in-a-curve, loaded condition Plot BCL303 - run 3, brake-in-a-curve, loaded condition Plot BCL304 - run 4, brake-in-a-curve, loaded condition Plot BCE601 - run 1, brake-in-a-curve, empty condition Plot BCE602 - run 2, brake-in-a-curve, empty condition Plot BCE603 - run 3, brake-in-a-curve, empty condition | ### 10.9.2 - Freightliner/Thomas Built School Bus - FMVSS No. 105 |
10.9.2.1
10.9.2.2
10.9.2.3
10.9.2.4 | Plot FBCL01 - run 1, brake-in-a-curve, loaded condition | -1 ₁ | |--|---|-------------------| | 10.9.2.5
10.9.2.6
10.9.2.7
10.9.2.8 | Plot FBCE01 - run 1, brake-in-a-curve, empty condition | -14
-15
-16 | #### Notes: **PDFRCE** = Pedal Force in pounds (lb) VHSPD = Vehicle Speed in miles per hour (mph) **DECEL** = Deceleration in g's Time = Time from first application of brake pedal in seconds (sec) ### 10.9.1.1 -Plot BCL301 ### 10.9.1.2 - Plot BCL302 A9-3 Feb 18, 1999 06: 46: 35PM ### 10.9.1.3 - Plot BCL303 A9-4 Feb 18, 1999 06: 47: 03PM ### 10.9.1.4 -Plot BCL304 Feb 18, 1999 06: 47: 23PM ### 10.9.1.5 - Plot BCE601 Feb 19, 1999 06: 35: 44PM #### 10.9.1.6 - Pl ot BCE602 ### 10.9.1.7 - Plot BCE603 Feb 19, 1999 06: 42: 57PM ### 10.9.1.8 - Plot BCE604 #### 10.9.2.1 -Plot FBCL01 A9-10 Feb 18, 1999 06: 51: 26PM ### 10.9.2.2 - Plot FBCL02 A9-11 Feb 18, 1999 06:50:44PM #### 10.9.2.3 - Plot FBCL03 A9-12 Feb 18, 1999 06: 51: 45PM #### 10.9.2.4 - Plot FBCL04 Feb 18, 1999 06:51:04PM #### 10.9.2.5 - Plot FBCE01 A9-14 Feb 18, 1999 06: 48: 29PM ### 10.9.2.6 - Plot FBCE02 ### 10.9.2.7 - Plot FBCE03 A9-16 Feb 18, 1999 06: 49: 13PM ### 10.9.2.8 - Plot FBCE04 Feb 18, 1999 06: 50: 09PM # **10.10** Appendix **10** | 10.10.1 - Index to | Vehicle Information Sheets and Photographs | A10-1 | |---|---|--------------------| | 10.10.2 - Vehicle | Information Sheets | | | 10.10.2.1
10.10.2.2
10.10.2.3
10.10.2.4
10.10.2.5
10.10.2.6
10.10.2.7 | | A10-12 | | Figure 10.1 | GMC School Bus -unit A - Side View | A10-16 | | Figure 10.2 | Labeco 5 th Wheel - Typical Installation - unit A | A10-16 | | Figure 10.3 | Typical Steer Axle Hydraulic disc Brake - GMC - unit A | A10-17 | | Figure 10.4 | Typical Drive Axle Hydraulic Disc Brake - GMC - unit A | | | Figure 10.5 | Freightliner/Thomas Built School Bus - unit B | A10-18 | | Figure 10.6 | Seating Arrangement - Freightliner/Thomas School Bus - unit B | | | Figure 10.7 Figure 10.8 | Brake Pedal Displacement Potentiometer - unit B Instrumentation - Freightliner Bus Interior - unit B | Al 0-19
Al 0-20 | | Figure 10.8 Figure 10.9 | Typical Steer Axle Disc Brake for Spoke Wheels - unit B | A10-20 | | · · | Freightliner 6x4 Straight Truck Empty - unit C | A10-21 | | · · | Peterbilt 6x4 Straight Truck with two Load Frames - unit D | | | • | Peterbilt Interior -Driver Displays and Data System - unit D | | | <u>-</u> | Гуріcal Axle Running Brake Dyno Test - Peterbilt - unit D | | | ~ | Navistar 6x4 with High CG Load Frame and Ballast - unit E | | | ~ | Data System and Signal Conditioning in Harness - unit E | | | Figure 10.16 | Navistar 4x2 Straight Truck 4900 - unit F | A10-24 | | Figure 10.17 1 | Navistar 4x2 Straight Truck with Navistar Load Frame - unit G | A10-25 | | Figure 10.18 | Navistar 4x2 Straight Truck 2674 - unit G. | Al 0-25 | $Key\ to\ pictures:\ GAWR=Gross\ Axle\ Weight\ Rating;\ GVWR=Gross\ Vehicle\ Weight\ Rating$ | Vehicle | : <u>GMC</u> | 4x2 School Bu | ıs | | _ | | | | |---------|-----------------------------------|---|----------------|---------------------|--|-----------------------------|------------|----------------| | Test N | lo <u>.: А</u> | | | Te | st Date(s) | : <u>7/3/96 - 8/</u> | 15/96 | | | Test F | acility and | d Location: Tra | ansportation I | Research Cen | ter East I | <u> Liberty Ohio</u> | | | | Year, N | Make, and | Model: 1996 | GMC Blue B | ird | | | | | | | | : 1GDL7T1J5S | | | | | | | | GAWR | t, lb: Ist | Axle8,100 | 2nd A | x <u>le 19,000</u> | _ 3rd A | x <u>le NA</u> | _ GVWR_ | 27,100 | | Center | | y Height, in: | | | | | | | | | | unladen (above | | | | | | | | | | laden (above gr | | | | | | | | | •Truck 1 | Ballast (above to | op of frame): | ballast plac | ed on floo | r & seats | | | | Wheell | oase, in:_ | <u> 193 </u> | | <u></u> | | | | | | | _ | stribution, lb: | | | | | | | | | | 1 st Axle: | | | | | | 14,430 | | | | 1 st Axle: | | | <u> 18,760 </u> | | Total: | 26,960 | | | | e(s): None | | | | | | | | | | eatments: (Yes/ | No) (Attach 1 | Photo): <u>No</u> | | | | | | BRAK | ES: | | | | | | | | | | | — 1 | ~ | | | | - · · · /5 | | | | Axles: | Type ¹ | <u>S</u> | <u>ize</u> | Mak | <u>e</u> | Lining (Ed | dge Code) | | | | | | | D 1 | 11 | | | | | $\frac{1}{2}$ | | | | Rockwe | ell | | | | | <u> </u> | NA | N 1 | <u> </u> | Eaton
NA | | N.T. | <u> </u> | | Duoleo | | | N | 4 | INA | | N. | <u> </u> | | Бгаке | Drum/Rot | tor | | | | | | | | | Axles: | Type ² | | | Ma | ke | Duct Ship | lds Installed? | | | Axies. | <u> 1 ypc</u> | | | 1410 | ike | Dust Sinc | ids Histarica: | | | 1 | Vented R | otor | | Bend | lix | NA | | | | $\frac{1}{2}$ | Vented R | | | Bend | | NA | | | | $\frac{\frac{2}{2}}{3}$ | NA | | | NA | | NA | - | | | <u></u> | 1111 | | | - 11 | • | 1.4.2 | | | ACTU | ATION 1 | DETAILS: | Actuator | S | S | lack Adju | sters | | | | | | | | | v | | | | | | | | | Length | or | | | | | | Axles: | <u>Make</u> | $Type^3$ | Wedge | angle | Manufactu | rer Car | m Rotation" | | | | - | | | - | | | | | | 1 _ | Hydraulic | | | | | | | | | $\frac{\frac{1}{2}}{\frac{3}{3}}$ | Hydraulic | | | | | | | | | 3 | NA | NA | N/ | 4 | NA | | NA | #### VEHICLE INFORMATION SHEET (Continued) | venicie: | GIVIC 4XZ S | chool Bus | | | | | |---------------------|-----------------------|--|-------------|-----------------------------------|----------------|-----------------| | TIRES: | | | | | Static Loade | d Radius | | Axles: | Pressure | (psi) <u>Size</u> | <u>Make</u> | <u>Model</u> | | <u>DataBook</u> | | <u>1</u> | 100 | 295/75 R22.5 | Goodvear | Unisteel G159 | | | | 2 | 100 | 295/75 R22.5 | Goodyear | Unisteel G159 | | 18,7 | | $\frac{1}{2}$ | NA | NA | NA | NA | NA | NA | | | anufacturer: <u>I</u> | Kelsey Haves | Mod | lel: | Configu | ıration: | | FRONT | SUSPENSIO | ON: | | | | | | Type: | spring | Make:_ | Rockwell | I | Model: | | | REAR S | SUSPENSIO! | <u>V:</u> | | | | | | Type: | spring | Make: | | N | Iodel: | | | Axle Spi | read, m(in): | | | N
Overall Wi | dth (SAE J693) | <u>:</u> | | Compres
Crack Pr | essure Rating | ccm(cfm): N. N. kPa(psi) ⁵ : | | t-out kPa(psi):_ 2nd Axle: | | Pa(psi): NA | | | rat Axic | NA
NA | | Treadle Valv | re· NA | | | Robtail I | Proportioning | · □ N | J A | Front Axle I | imiting: NA | | | Air Drye | r. | . <u>– – </u> | A | Air Compo | ounding: NA | • | | | | | | kes Controlled: | | | | | | | | its: | | | | | | IES 1 (cu.in.): 1 | | | | | | | | | | | | | | Supply:_ | NA | | Prima | r <u>y: NA</u> | Secondai | ry: NA | | Auxilia | ry: NA | | Isolated | d From Service? | 1 | • | | SPECIA | AL CONDIT | IONS: | | oct brake performa | | | | | | | | | | | ¹Cam, disc, wedge, etc. ² Cast or composite **drum**, vented or non-vented rotor, etc. ³ Size and diaphragm **or** piston ⁴ Same or opposite to forward wheel rotation ⁵ Relative to rear axle(s) centerline (include sketch if necessary) | | ghtliner 4x2 School | | | | | |-----------------------------------|-------------------------------|----------------------|--------------------------------------|---------------------|---------------------| | Test No.: B | | | Test Date(s):_ | 8/21-30/19 | 96 | | Test Facility an | nd Location: <u>Transp</u> | ortation Resea | rch Center East Lil | erty Ohio | | | | nd Model: <u>1996 Fre</u> | | | | | | | o.:_ <u>E00056</u> | | | | | | GAWR, lb: 1 | st Axle 7,560 | 2nd Axle_ | <u>17,940</u> 3rd A | x <u>le NA</u> G | VWR <u>25,500</u> | | Center of Grav | | | | | | | | k, unladen (above gr o | | | | | | *Truck | k, laden (above grou n | nd)(in): | | | | | Trucl | k Ballast (above top o | of frame): <u>ba</u> | <u>llast placed on floo</u> i | & seats | | | Wheelbase, i | n: 252 | | _ | | | | Curb Weight I | Distribution, lb: | | | | | | | Unladen: 1st Axle | e:7,720 | _ 2nd Axle:8,8 | 90 Tot | | | | Laden: 1st Axle:_ | <u>7,530</u> 2 | 2nd Axle: <u>18,000</u> | Tota | 1 <u>: 25,530</u> | | Retarder(s) Ty | pe(s): None | | | | | | Aerodynamic 7 | Treatments: (Yes/No) | (Attach Photo | o): <u>No</u> | | | | BRAKES: | | | | | | | | | | | | | | Axles: | $\underline{\text{Type}^1}$ | <u>Size</u> | <u>Make</u> | <u>Linir</u> | ig (Edge Code) | | | | | | | | | 1 | | | | | | | $\frac{\frac{1}{2}}{3}$ | | *14 | 27.4 | <u> </u> | · A | | _3_ | NA | NA | NA | ,1/ | <u>A</u> | | D 1 D /D | . , | | | | | | Brake Drum/R | Cotor | | | | | | Axles: | Type ² | | Mal | e Duct | Shields Installed? | | Axies. | <u>1 ype</u> | | <u>iviar</u> | <u>Dust</u> | Silicius Histaricu: | | 1 | Vented Rotor | | | N. | 4 | | | | | | | | | $\frac{2}{3}$ - | NA | | NA | | | | <u> </u> | 141.7 | | | 1,11 | | | ACTUATION | J DETAILS: | | | | | | ACTUATION | DETAILS. | | | | | | | Actuators | | Slack Adius | ters | | | | 1100000015 | | | | | | | | | Length or | | | | Axles | : <u>Make</u> | Type ³ | Wedge_angle | <u>Manufacturer</u> | Cam Rotation" | | | | | ,,, | | | | 1 | <u>Hydraulic</u> | | | | | | $\frac{\frac{1}{2}}{\frac{3}{2}}$ | Hydraulic | | | | | | 3 | NA | NA | NA | NA | NA | VEHICLE INFORMATION SHEET (Continued) | Vehicle: Freightliner 4x2 School | Bus | | | | |---|---|---------------------------|---------------------------|------| |
TIRES: Axles: Pressure (psi) Size 1 10R22.5 2 10R22.5 3 NA NA | <u>Make</u>
Michelin
Michelin
NA | Model
XZA
XZA
NA | Static Loaded Measured NA | | | ABS: Manufacturer: | Model: | | Configuration | : | | FRONT SUSPENSION: | | | | | | Type: spring | Make: | | Model: | | | REAR SUSPENSION: | | | | | | Type: spring Spread, m(in): | Make: (| Overall Width (| Model:
SAE J693): | | | AIR SYSTEM: None | | | | | | Compressor Capacity ccm(cfm):_
Crack Pressure Ratings kPa(psi) ⁵ : | | | | - | | lst Axle: NA | | 2nd Axle: | NA NA | | | 3rd Axle: NA | 3.7.4 | Treadle Va | lve: NA | | | Bobtail Proportioning: | NA
NA | Front Axie | Limiting: <u>NA</u> | | | Air Dryer: Spring Brake Inversion Valve: | | | | | | Specifics Regarding Air Brake Sys | | | | | | MIR TANK VOLUMES 1 (cu.in. | | | 1471 | | | | | | | | | Supply: NA | Primar <u>y:</u> | NA | Secondar <u>y</u> | : NA | | Auxiliar <u>y: NA</u> | Isolated From | om Service? □ | | | | SPECIAL CONDITIONS: | | | | | | Special conditions or equipment w | hich might affect | brake performa | ance: | | | | | | | | ¹Cam, disc, wedge, etc. ² Cast or composite drum, vented or non-vented rotor, etc. ³ Size and diaphragm or piston ⁴ Same or opposite to forward wheel rotation ⁵ Relative to rear axle(s) centerline (include sketch if necessary) | Test No.: C | Vehicle: Frei | ghtliner 6x4 Strai | ght Truck | | | | | |--|-------------------------|-------------------------|-------------------|----------------------|---------------------|-------------------|---------------------------| | Year, Make, and Model: 1995 Freightliner Business Class Conventional FLC 112 6x4 VIN or Unit No.: JEUYTM/DB9SL731534 | | | | | e(s): Sept. 1 | 3-Oct.5, 1996 | _ | | VIN or Unit No.: 1FUYTMDB9SL731534 GAWR, lb: 1 st Axle 12,000 2nd Axl3rd20000 x 1 e 20,00(GVWR 52,000 Center of Gravity Height, in: *Truck, unladen (above ground)(in): 42,5 in with 2602 lb load frame installed *Truck, laden (above ground)(in): height not available •Truck Ballast (above top of frame): 30,5 in Wheelbase, in: 180 Curb Weight Distribution, lb: Unladen: 1 st Axle: 8,810 2nd Axle: 9,150 tandem axle Laden: 1 st Axle: 12,010 2nd Axle: 40,180 tandem axle Total: 17,960 Retarder(s) Type(s): None Aerodynamic Treatments: (Yes/No) (Attach Photo): No BRAKES: Axles: Type¹ Size Make Lining (Edge Code) 1 | Test Facility an | nd Location: Tran | sportation Res | search Center Ea | st Liberty_ | Ohio | | | Stake 12,000 2nd Ax13rd20000 x e 20,00(GVWR 52,000 52,0 | Year, Make, and | d Model: <u>1995</u> Fr | eightliner Busi | ness Class Conve | entional FLO | C 112 6x4 | | | Center of Gravity Height, in: *Truck, unladen (above ground)(in): | VIN or Unit No | .: <u>1FUYTM</u> DB99 | SL731534 | | | | | | *Truck, unladen (above ground)(in): *Truck laden (above ground)(in): *Truck Ballast (above top of frame): *Truck Ballast (above top of frame): 30.5 in Wheelbase, in: 180 Curb Weight Distribution, lb: Unladen: 1 st Axle: 8.810 2nd Axle: 9.150 tandem axle | GAWR, lb: 1 | st Axle12,000 | 2nd Ax | 1 <u>3rd204000_x</u> | 1 <u>e</u> | <u>20,00(</u> GVW | /R <u>52,000</u> | | *Truck, laden (above ground)(in): height not available • Truck Ballast (above top of frame): 30.5 in Wheelbase, in: 180 Curb Weight Distribution, lb: Unladen: 1 st Axle: 8.810 2nd Axle: 9.150 tandem axle Laden: 1st Axle: 12.010 2nd Axle: 40,180 tandem axle Acrodynamic Treatments: (Yes/No) (Attach Photo): No BRAKES: Axles: Type¹ Size Make Lining (Edge Code) 1 FF961NX241 12,000 lb Rockwell 2 RD20145NFN1062 20,000 lb Rockwell 3 RR20145NFN1090 20,000 lb Rockwell Brake Drum/Rotor Axles: Type² Make Dust Shields Installed? 4 Yes 2 Yes 3 Yes ACTUATION DETAILS: Length or Axles: Make Type³ Wedge angle Manufacturer Cam Rotation⁴ | Center of Gravi | ty Height, in: | | | | | | | *Truck, laden (above ground)(in): height not available • Truck Ballast (above top of frame): 30.5 in Wheelbase, in: 180 Curb Weight Distribution, lb: Unladen: 1 st Axle: 8.810 2nd Axle: 9.150 tandem axle Laden: 1st Axle: 12.010 2nd Axle: 40,180 tandem axle Acrodynamic Treatments: (Yes/No) (Attach Photo): No BRAKES: Axles: Type¹ Size Make Lining (Edge Code) 1 FF961NX241 12,000 lb Rockwell 2 RD20145NFN1062 20,000 lb Rockwell 3 RR20145NFN1090 20,000 lb Rockwell Brake Drum/Rotor Axles: Type² Make Dust Shields Installed? 4 Yes 2 Yes 3 Yes ACTUATION DETAILS: Length or Axles: Make Type³ Wedge angle Manufacturer Cam Rotation⁴ | | | ground)(in): | 42.5 in with | <u>1 2602 lb lo</u> | oad frame insta | alled | | • Truck Ballast (above top of frame): 30.5 in Wheelbase, in: 180 Curb Weight Distribution, lb: | | | | | | | | | Wheelbase, in: 180 | Truck | Ballast (above to | p of frame): | 30.5 in | | | | | Curb Weight Distribution, lb: Unladen: 1 st Axle: 8.810 2nd Axle: 9.150 tandem axle Total: | | | • | | | | | | Unladen: 1 st Axle: 8,810 2nd Axle; 9,150 tandem axle Total: 17,960 Laden: 1 st Axle: 12,010 2nd Axle: 40,180 tandem axle Total: 52,190 Retarder(s) Type(s): None Aerodynamic Treatments: (Yes/No) (Attach Photo): No BRAKES: | | | | | | | | | Laden: 1st Axle: 12,010 2nd Axle: 40,180 tandem axle Total: 52,190 | • | | le: 8,810 2nd | Axle: 9,150 ta | indem axl | e Total: | 17,960 | | Retarder(s) Type(s):None Aerodynamic Treatments: (Yes/No) (Attach Photo):No | | | | | | | 52,190 | | Aerodynamic Treatments: (Yes/No) (Attach Photo): No BRAKES: Axles: Type¹ Size Make Lining (Edge Code) 1 FF961NX241 12,000 lb Rockwell 2 RD20145NFN1062 20,000 lb Rockwell 3 RR20145NFN1090 20,000 lb Rockwell Brake Drum/Rotor Axles: Type² Make Dust Shields Installed? 1 Yes Yes Yes 2 Yes Yes 3 Yes Yes 4 | | | | | | · | | | Axles: Type Size Make Lining (Edge Code) | | | | | | | | | Axles: Type Size Make Lining (Edge Code) | | | , (| | | | | | 1 | | | | | | | | | 1 | Axles: | Type ^I | Size | N | 1ake | Lining (| (Edge Code) | | RD20145NFN1062 20,000 1b Rockwell | | <u>/,</u> | | · <u></u> | | | | | RD20145NFN1062 20,000 1b Rockwell | 1 | FF961NX24 | 12.00 | 0 lb Ro | ockwell | | | | Brake Drum/Rotor Axles: Type² Make Dust Shields Installed? 1 Yes 2 Yes 3 Yes ACTUATION DETAILS: Air Chambers Slack Adjusters Length or Axles: Make Type³ Wedge angle Manufacturer Cam Rotation⁴ | 2 | | | | | | | | Brake Drum/Rotor Axles: Type² Make Dust Shields Installed? 1 Yes 2 Yes 3 Yes ACTUATION DETAILS: Air Chambers Slack Adjusters Length or Axles: Make Type³ Wedge angle Manufacturer Cam Rotation⁴ | 3 | •
 | | | | | | Axles: Type ² Make Dust Shields Installed? Yes Yes Yes Yes Yes Yes Yes Ye | | | | | | <u> </u> | | | Axles: Type ² Make Dust Shields Installed? Yes Yes Yes Yes Yes Yes Yes Ye | Brake Drum/Ro | otor | | | | | | | Yes | | | | | | | | | Yes | Axles: | Type ² | | | Make | Dust S | hields Installed? | | ACTUATION DETAILS: Air Chambers Slack Adjusters Length or Wedge angle Manufacturer Cam Rotation ⁴ | | | | | | | | | ACTUATION DETAILS: Air Chambers Slack Adjusters Length or Wedge angle Manufacturer Cam Rotation ⁴ | 1 | | | | | \mathbf{Y} | es | | ACTUATION DETAILS: Air Chambers Slack Adjusters Length or Wedge angle Manufacturer Cam Rotation ⁴ | | | | | | Y | es | | Air Chambers Slack Adjusters Length or Wedge angle Manufacturer Cam Rotation ⁴ | ${3}$ | | | | | Y | es | | Air Chambers Slack Adjusters Length or Wedge angle Manufacturer Cam Rotation ⁴ | | | | | | | | | Axles: Make Type ³ Length or Wedge angle Manufacturer Cam Rotation ⁴ | ACTUATION | DETAILS: | | | | | | | Axles: <u>Make</u> <u>Type³</u> <u>Wedge angle</u> <u>Manufacturer</u> <u>Cam Rotation⁴</u> | | Air Chan | nbers | Sla | ck Adjuster | rs | | | Axles: <u>Make</u> <u>Type³</u> <u>Wedge angle</u> <u>Manufacturer</u> <u>Cam Rotation⁴</u> | | | | | | | | | | | | _ 2 | • | | | | | 1 MGM 20 5.5 in Rockwell same 2 MGM 30 - 30 5.5 in Rockwell same | Axles: | <u>Make</u> | Type ³ | Wedge angle | <u>Manı</u> | <u>ifacturer</u> | Cam Rotation ⁴ | | 2 MGM 30 - 30 5.5 in Rockwell same | 1 | MCM | 20 | 5 5 in | D a =1 | zavo11 | cama | | 4 IVICTIVI 30 - 30 J.J III ROCKWEII SAINE | 1 - | | | | | | | | 3 MGM 30 - 30 5.5 in Rockwell same | $\frac{2}{3}$ - | | | | | | | (Continued) Vehicle: Freightliner 6x4 Straight Truck Static Loaded Radius TIRES: Make Model Measured **DataBook** Axles: Pressure (psi) Size 275/80R22.5 Pilot XZA - 1 19.7 Michelin 275/80R22.5 Michelin Pilot XZA - 1 19.7 100 100 275/80R22.5 Michelin Pilot XZA - 1 19.7 ABS: Manufacturer: WABCO Model: Configuration: **FRONT SUSPENSION:** Type: Spring Make: Model: **REAR SUSPENSION:** Type: Air Make: Model: Spread, m(in): Overall Width (SAE J693): AIR SYSTEM: Compressor Capacity ccm(cfm):_____ Cut-out kPa(psi):_____ Cut-in kPa(psi):_____ Crack Pressure Ratings(psi)⁵: 1 st Axle: 2nd Axle: 3rd Axle:______ Treadle Valve:_____ Bobtail Proportioning: Air Dryer: Air Compounding: Air Compounding: Air Drver: Spring Brake Inversion Valve: Number of Brakes Controlled: Specifics Regarding Air Brake System Components: AIR TANK VOLUMES 1 (cu.in.): Supply: _____ Primary: _____ Secondary: _____ Secondary: _____ **SPECIAL CONDITIONS:** Special conditions or equipment which might affect brake performance: ¹Cam, disc, wedge, etc. ² Cast or composite **drum**, vented or non-vented rotor, etc. ³ Size and diaphragm or piston ⁴ Same or opposite to forward wheel rotation ⁵ Relative to rear axle(s) centerline (include sketch if necessary) | rest No.: D Test Date(s): Oct. 3-8,1996 rest Facility and Location: Transportation Research Center East Liberty Ohio rear, Make, and Model: 1995. Peterbilt. Model 357. conventional IN or Unit No.: 1XPAXBTX2SD383969 AWR, lb: 1 st Axle 20,000 2nd Axle 20,000 3rd Axle 20,000 GVWR 60,000 renter of Gravity Height, in: Truck, unladen (above ground)(in): 43.7 in with 5204 lb (double load frame assembly height not available rruck Ballast (above top of frame): 20.5 in Theelbase. in: 3 11 Theelbase. in: 3 11 Theelbase. ist Axle: 13,020 Tandem Axle: 19,580 Total: 32,600 Laden: 1st Axle: 19,990 Tandem Axle: 40,050 Total: 60,040 retarder(s) Type(s): None rerodynamic Treatments: (Yes/No) (Attach Photo): No RAKES: Axles: Type¹ Size Make Lining (Edge Code) 1 2 3 3 | |--| | ear, Make, and Model: 1995 Peterbilt Model 357 conventional [N or Unit No.: 1XPAXBTX2SD383969] AWR , lb: 1 st Axle 20,000 2nd Axle 20,000 3rd Ax1e 20,000 GVWR 60,000 enter of Gravity Height, in: • Truck, unladen (above ground)(in): 43.7 in with 5204 lb (double load frame assembly • Truck, laden (above ground)(in): height not available • Truck Ballast (above top of frame): 20.5 in Theelbase. in: 3 11 urb Weight Distribution, lb: Unladen: 1st Axle: 13,020 Tandem Axle: 19,580 Total: 32,600 Laden: 1st Axle: 19,990 Tandem Axle: 40,050 Total: 60,040 etarder(s) Type(s): None erodynamic Treatments: (Yes/No) (Attach Photo): No RAKES: Axles: Type! Size Make Lining (Edge Code) | | AWR, lb: 1 st Axle20,0002nd Axle20,0003rd Axle20,000GVWR_60,000enter of Gravity Height, in: • Truck, unladen (above ground)(in):43.7 inwith 5204 lb (double load frame assembly enter of Gravity Height, in: • Truck, laden (above ground)(in): | | AWR, lb: 1 st Axle 20,000 2nd Axle 20,000 3rd Axle 20,000 GVWR 60,000 enter of Gravity Height, in: • Truck, unladen (above ground)(in): 43.7 in with 5204 lb (double load frame assembly eight not available • Truck Ballast (above top of frame): 20.5 in Theelbase. in: 3 11 urb Weight Distribution, lb: Unladen: 1st Axle: 13,020 Tandem Axle: 19,580 Total: 32,600 Laden: 1st Axle: 19,990 Tandem Axle: 40,050 Total: 60,040 etarder(s) Type(s): None erodynamic Treatments: (Yes/No) (Attach Photo): No RAKES: Axles: Type! Size Make Lining (Edge Code) | | enter of Gravity Height, in: • Truck, unladen (above ground)(in): • Truck, laden (above ground)(in): • Truck Ballast (above top of frame): f | | • Truck, unladen (above ground)(in): • Truck, laden (above ground)(in): • Truck Ballast (above top of frame): • Truck Ballast (above top of frame): ——————————————————————————————————— | | • Truck, laden (above ground)(in): height not available • Truck Ballast (above top of frame): 20.5 in Theelbase. in: 3 11 urb Weight Distribution, lb: Unladen: 1st Axle: 13,020 Tandem Axle: 19,580 Total: 32,600 Laden: 1st Axle: 19,990 Tandem Axle: 40,050 Total: 60,040 etarder(s) Type(s): None erodynamic Treatments: (Yes/No) (Attach Photo): No RAKES: Axles: Type¹ Size Make Lining (Edge Code) | | • Truck Ballast (above top of frame): | | Theelbase. in: 3 11 urb Weight Distribution, lb: Unladen: 1st Axle: 13,020 | | urb Weight Distribution, lb: Unladen: 1st Axle: 13,020 | | Unladen: 1st Axle: 13,020 Tandem Axle: 19,580 Total: 32,600 Laden: 1st Axle: 19,990 Tandem Axle: 40,050 Total: 60,040 etarder(s) Type(s): None erodynamic Treatments: (Yes/No) (Attach Photo): No RAKES: Axles: Type Size Make Lining (Edge Code) | | Laden: lst Axle: 19,990 Tandem Axle: 40,050 Total: 60,040 etarder(s) Type(s): None erodynamic Treatments: (Yes/No) (Attach Photo): No RAKES: Axles: Type¹ Size Make Lining (Edge Code) | | etarder(s) Type(s): None erodynamic Treatments: (Yes/No) (Attach Photo): No RAKES: Axles: Type ¹ Size Make Lining (Edge Code) | | erodynamic Treatments: (Yes/No) (Attach Photo): No RAKES: Axles: Type¹ Size Make Lining (Edge Code) | | Axles: Type ¹ Size Make Lining (Edge Code) | | Axles: Type ¹ Size Make Lining (Edge Code) | | | | | | $\frac{1}{2}$ $\frac{1}{3}$ | | $\frac{1}{2}$ $\frac{1}{3}$ $\frac{1}{3}$ | | <u>2</u> | | <u>3</u> | | | | 1 . D.,/D | | rake Drum/Rotor | | Axles: Type ² Make Dust Shields Installed? | | Axies. Type Dust Sincias instance. | | <u>1</u> | | 1 NO NO | | $\frac{\mathcal{L}}{3}$ | | <u> </u> | | CTUATION DETAILS: | | CTUATION DETAILS. | | Air Chambers Slack Adjusters | | | | Length or | | Axles: Make Type ³ Wedge angle Manufacturer Cam Rotation ⁴ | | | | | | 1 | | $\frac{\frac{1}{2}}{3}$ | VEHICLE INFORMATION SHEET (Continued) | Vehicle: <u>Peterbilt 6x4 Straight Tru</u> | ck | | - | | |---|-------------------|--------------------------------------|-----------------------------|-----------------| | <u>FIRES:</u>
Axles: <u>Pressure (psi)</u> <u>Size</u> | Make | <u>Model</u> | | <u>DataBook</u> | | $\frac{1}{2}$ | Michelin | X | | | | ABS: Manufacturer: | Model: | | Configurati | on: | | FRONT SUSPENSION: | | | | | | Type: Spring | Make: Ea | aton | Model: | EFA20F4 | | REAR SUSPENSION: | | | | | | Type: <u>Spring</u> Axle Spread, m(in):
| Make: <u>E</u> | Caton Overall W | Model:
Vidth (SAE J693): | DS581P | | AIR SYSTEM: | | | | | | Compressor Capacity ccm(cfm):
Crack Pressure Ratings(psi) ⁵ : | | | | | | 1 st Axle: | | _ Z na Axie:
Treadle Valve | ٠. | | | Bohtail Proportioning: | | Front Axle L | imiting: | | | Bobtail Proportioning: Air Dryer: | | Air Compour | nding: | | | Spring Brake Inversion Valve: | Number of Brake | es Controlled: _ | | | | Specifics Regarding Air Brake Sys | tem Components | 3: | | | | AIR TANK VOLUMES I (cu.in.) | <u>:</u> | | | | | Supply: | Primary: | | Secondary: | | | Auxiliary: | Isolated From | n Service? □ | | | | SPECIAL CONDITIONS: | | | | | | Special conditions or equipment wi | hich might affect | t brake perform | ance: | | | | - | - | | | ¹Cam, disc, wedge, etc. ²Cast or composite drum, vented or non-vented rotor, etc. ³ Size and diaphragm or piston ⁴ Same or opposite to forward wheel rotation ⁵ Relative to rear axle(s) centerline (include sketch if **necessary**) | Vehicle: Nav | istar 2674 6x4 Stra | night Truck | | | | | | |--------------------------|-------------------------|---------------------|------------|--------------|-----------------|----------------------|--------------------| | Test No.: E | | | Test | Date(s): | October 21 | -Novembe | er 6 <u>. 1996</u> | | Test Facility as | nd Location: Trans | sportation Research | arch Cente | er East Li | berty Ohio | 1 | | | Year, Make, an | d Model: 1996 N | avistar 2674 6x4 | 4 | | | | | | VIN or Unit No | o.: <u>1HTGLA</u> HT9V | H400225 | | | | | | | GAWR , lb: | lst Axle 15,000 | _ 2nd Axle_2 | 23,000 | 3rd Axle_ | 23,000 | _ GVWR | 61000 | | Center of Gravi | ity Height, in: | | | | | | | | *Truck | , unladen (above g | ground)(in): | 38 in | with 260 | 2 lb load fr | ame instal | led | | Truck | , laden (above gro | und)(in): | 76 in | | | | | | • Truck | Ballast (above top | of frame): | 51.1 in | | | | | | Wheelbase, in: | : 238 | • | _ | | | | | | Curb Weight D | istribution, lb: | | | | | | | | C | Unladen: 1st A | Axle: 10,480 | Tanden | n Axle: | _10,890 | Total: | 21,370 | | | | de: 14,470 | Tandem | Axle: | 45,090 | Total: | 60,760 | | Retarder(s) Typ | | | | | | | | | | Freatments: (Yes/No | o) (Attach Photo | o): No | | | | | | , | • | , (| , | | | | _ | | BRAKES: | | | | | | | | | | | | | | | | | | Axles: | Type ¹ | <u>Size, in</u> | | Mak | <u>:e</u> | Lining | Edge Code | | | | | • | | _ | | - | | 1_ | S-cam | 16.5 x 5 | | Rockw | ell | ABB | 931-162FF | | $\frac{\frac{1}{2}}{3}$ | s-cam | 16.5 x 7 | | Rockw | rell | ABB 93 | 1-1 62FF | | <u>3</u> | s-cam | 16.5 x 7 | | Rockw | vell | ABB 93 | 1-162FF | | | | | | | | | | | Brake Drum/Re | otor | | | | | | | | | _ | | | | | | | | Axles: | <u>Type²</u> | | | <u>M</u> | <u>ake</u> | Dust Sh | ields Installed? | | | | | | | | | | | <u> 1</u> _ | | | | | | | | | 2 | | | | | | | | | 3 | | | | | | | | | | | | | | | | | | ACTUATION | DETAILS: | | | | | | | | | | | | | | | | | | Air Chamb | pers | | Slack A | <u>djusters</u> | | | | | | | | | | | | | | | • | Length | | | | | | Axles: | <u>Make</u> | Type ³ | Wedge_ | <u>angle</u> | Manufactu | <u>irer</u> <u>C</u> | am Rotation4 | | _ | | | | | | | | | 1 | <u>_MGM</u> | 20 | 5.5 | | Rockwell | | | | $\frac{\overline{2}}{3}$ | <u>MGM</u> | 30-30 | 6.0 | | Rockwel | | | | <u>3</u> | MGM | 30-30 | 6.0 | | Rockwel | l | | # VEHICLE INFORMATION SHEET (Continued) Vehicle: Navistar 2674 6x4 Straight Truck Static Loaded Radius TIRES: DataBook Measured Axles: Pressure (psi) Size Make Model Unisteel G286 <u>110</u> <u>425/65R22.5</u> Goodyear 20.8 11 R 24.5 Goodyear Unisteel G362 20.7 105 105 11 R 24.5 Goodyear Unisteel G362 20.8 20.7 ABS: Manufacturer: Bendix Model: 4S/4M Configuration: Al & A3 FRONT SUSPENSION: Type: _____ Make: ____ Model: _____ **REAR** SUSPENSION: Type: walking beams Make: Model: Model: Overall Width (SAE J693): AIR SYSTEM: Compressor Capacity ccm(cfm):_____ Cut-out kPa(psi):_____ Cut-in kPa(psi):_____ Crack Pressure Ratings(psi)⁵: 1 st Axle: ______ 2nd Axle: _____ 3rd Axle:______ Treadle Valve:____ Spring Brake Inversion Valve: Number of Brakes Controlled: Specifics Regarding Air Brake System Components: AIR TANK VOLUMES 1 (cu.in.): Supply: _____ Secondary: _____ Auxiliary: ______ Isolated From Service? **SPECIAL CONDITIONS:** Special conditions or equipment which might affect brake performance: <u>Air Dryer</u> ¹ Cam, disc, wedge, etc. ² Cast or composite **drum**, vented or non-vented rotor, etc. ³ Size and diaphragm or piston ⁴ Same or opposite to forward wheel rotation ⁵ Relative to rear axle(s) centerline (include sketch if necessary) | Vehicle: Navistar | r 4900 4x2 Straig | ht Truck | | | | | | |-------------------------------------|-----------------------------|-------------------|-----------------|-----------------------|------------------|-----------------------|---| | Test No.: F | | | | t Date(s): Oc | | | | | Test Facility and L | | | | <u>r East Libert</u> | y Ohio | | | | Year, Make, and M | Iodel: <u>1996 Nav</u> | istar 4900 SA | A 495 4x2 | | | | | | VIN or Unit No.: 1 | HTSDADROTH: | 398198 | | | | | | | GAWR, lb: 1st A | xle <u>14,600</u> | 2nd Axle_ | 21,000 | 3rd A x <u>1 e</u> | NA NA | _ GVWR_ | <u> 35,600</u> | | Center of Gravity I | Height, in: | | | | | | | | • | nladen (above gro | und)(in): | 35.3 in | with 3560 lb | Navista | r load frame | e installed | | | den (above groun | , · · · — | 62.2 in | | | | | | | llast (above top o | , | | | | | | | Wheelbase, in: 15 | • | - | | | | | | | Curb Weight Distri | | | _ | | | | | | _ | ıladen: 1st Axle: | 7 420 | 2nd Axl | e: <u>8,340</u> | | Total: 15 | 760 | | | | 14,300 | | e: 21 ,280 | | Total:35 | | | Retarder(s) Type(s) | • | | 2nd / txt | c. <u>21,200</u> | | 10tar <u>55</u> | <u>,500</u> | | Aerodynamic Treat | | | to): No | | | | | | Aerodynamic Treat | illelits. (Tes/No) | (Attach Pho | 10). <u>110</u> | | | | | | BRAKES: | | | | | | | | | Axles: | <u>Type¹</u> | <u>Size, ir</u> | <u>n</u> | <u>Make</u> | | Lining (I | Edge Code) | | 1 | Q-plus | 15 x 4 | | Rockwel | 1 | ABB- | 197 | | $\frac{\frac{1}{2}}{\frac{2}{3}}$ - | Q-p <u>l</u> us | 16.5 x 7 | | Rockwe | 11 | ABB- | <u> 197 </u> | | <u>3</u> | NA | NA | | NA | | NA | | | Brake Drum/Rotor | | | | | | | | | | _ • | | | | | | | | Axles: | $\underline{\text{Type}^2}$ | | | <u>Make</u> | | Dust Shiel | ds Installed? | | 1 | Drum | | | | | | | | _2 | - Cast shoes | | | | | | | | I | NA | | | NA | | N/ | <u> </u> | | L | UA. | | | 1471 | | . 12 | | | ACTUATION DE | ETAILS: | | | | | | | | | Air Chamber | ·s | | Slack Adju | sters | | | | | | | | | | | | | | | - · | Length | | | | | | Axles: | <u>Make</u> | Type ³ | <u>Wedge</u> | <u>angle</u> <u>N</u> | <u>Ianufactu</u> | <u>rer</u> <u>Can</u> | n Rotation' | | | | | | | | | | | <u>1</u> <u>N</u> | <u> </u> | | 5.5 | | Rockwell | | | | | | 30-30 | 5.5 | | Rockwell | | | | <u>3</u> _1 | <u>NA</u> | NA | NA | | NA | | | VEHICLE INFORMATION SHEET (Continued) | Vehicle: | _Navistar 4 | 900 4x2 Straig | tht Truck | | (1111) | | |-----------------------------------|-------------------|-------------------------|-------------------------|---------------------|-----------------------|--------------------------| | TIRES: | | | | | Static Loade | d Radius (in) | | | Pressure (| nsi) Size | <u>Make</u> | <u>Model</u> | Measured | | | | 119 | 12R22.5 | Goodyear | Unisteel G286 | | 20.0 | | $\frac{\frac{1}{2}}{\frac{3}{2}}$ | | 11R24.5 | • | Unisteel G362 | | 20.8 | | 3 | | | | NA | | | | <u></u> | 1471 | 1471 | 112.5 | A 14 A | * * * * | | | ABS: M | lanufacturer | Bendix | Model <u>: 0</u> | ‡ABA | Configu | ration: 4S4M | | <u>FRONT</u> | Γ SUSPENS | ION: | | | | | | Type: | Spring | | _ Make: <u>Inte</u> | ernational | | Mode <u>l: I-140S</u> | | REAR S | SUSPENSIO | ON: | | | | | | Type: | Spring | | Make:R | ockwell | | Model: | | Axle Sp | read, m(in): | | | Overall W | idth (SAE J69) | 3): | | Compre | Pressure Rati | ngs(psi) ⁵ : | | | | Cut-in kPa(psi) : | | | 1 st Axle: | | | 2nd Axle: | | | | | 3rd Axle: | | | Treadle Valve | : | | | Bobtail | Proportionii | ng: 🗆 _ | | Front Axle Li | imiting: | | | Air Dry | er: | | /es | Air Compound | ding: | | | | | | | | | | | | | | | | | | | • | | MES 1 (cu.in. | • | | | | | Supply: | | | Primary: _ | | Secondary: | | | Auxilia | ry: | | Isolated F | rom Service? □ | | | | SPECL | AL CONDI | TIONS: | | | | | | Special | conditions | or equipment v | vhich might aff | fect brake performa | nnce: <u>Air Dr</u> v | /er | | - | | | | | | | ¹Cam, disc, wedge, etc. ² Cast or composite drum, vented or non-vented rotor, etc. ³ Size and diaphragm or piston ⁴ Same or opposite to forward wheel rotation ⁵ Relative to rear axle(s) centerline (include sketch if necessary) | Vehicle: Navis | <u>star 2674 4x2 Stra</u> | ight Truck | | | | |---------------------------------------|---------------------------|-------------------|----------------------|--|--------------------------------| | Test No.: G | | | Test Date(s): | April_10 | . 1997 | | Test Facility and | d Location: Trans | sportation Resea | rch Center East I | <u>iberty Ohio</u> | | | Year, Make, and | Model: 1996 N | avistar SA267 4x | 2 | | | | | : <u>.1HTGKAHR6V</u> | | | | | | GAWR, lb: 1s | t Axle 20,000 | 2nd Axl | <u>le 30,000</u> 3rd | Ax <u>le NA</u> | GVWR <u>50,000</u> _ | | Center of Gravit | | | | | | | | | | | <u>60 lb Navistar</u> | load frame installed | | · · · · · · · · · · · · · · · · · · · | laden (above gro | , , , | 60.2 in | | | | *Truck | Ballast (above top | of frame): | 34.6 in | | | | Wheelbase, in: | 148 | | | | | | Curb Weight Di | | | | | | | | | | 2nd Axle: NA | | al: NA | | La | den: lst Axle:_ | 19, <u>930</u> _2 | 2nd Axle:29,0 | <u>)70 </u> | al: <u>49,000</u> | | Retarder(s) Type | e(s): | | | | _ | |
Aerodynamic Tr | reatments: (Yes/No | o) (Attach Photo |): <u>No</u> | | _ | | | | | | | | | BRAKES: | | | | | | | A1 | Tumal | Simo in | M | a <u>ke</u> | Lining (Edge Code) | | Axles: | <u>Type¹</u> | <u>Size, in</u> | 1716 | ake | Lilling (Euge Code) | | A | S-cam | | | | | | A | S-cam | 16.5 x 7 | | | | | $\frac{2}{3}$ | NA | NA | | ĪA. | NA NA | | <u> </u> | 1411 | 1484 | ١. | 11 X | | | Brake Drum/Ro | tor | | | | | | Diane Diani ito | 101 | | | | | | Axles: | Type ² | | Ma | ık <u>e</u> | Dust Shields Installed? | | | | | - | | | | <u>l</u> | | | | | | | 2 | Cast drum | | | | | | 3 | NA | | NA | | NA | | | | | | | | | ACTUATION | DETAILS: | | | | | | | | | | | | | | Air Chaml | oers | Slack | Adjusters | | | | | | | | | | | | _ • | Length or | | | | Axles: | <u>Make</u> | Type ³ | Wedge angle | Manufacture | er Cam Rotation ⁴ | | | | | | | | | $\frac{\frac{1}{2}}{3}$ | | | | | | | 2 | MGM_ | <u>36-36</u> | | | > T 4 | | 3 | _NA | NA | NA | NA | NA NA | (Continued) | Vehicle: Navistar 2674 4x2 Straight Truck | | | | | | | |--|-------------------------------|---|---|--------------------------------------|--------------------------------|------------------| | TIRES: Axles: Press 1 | <u>ure (</u> psi)
42
31 |) <u>Size</u>
5/65R22.5
5/80R22.5
NA | <u>Make</u>
Goodvear
Goodvear
NA | Model Unisteel G286 Unisteel G286 NA | Static Loade
Measured
NA | DataBook
19.9 | | ABS: Manufact | urer: <u>Be</u> ı | ndix | Model: 4L5 | | Configuration: | 4S4M | | FRONT SUSPENSION: | | | | | | | | Type: spring | | Make:_ | International | | Model: | I-200S | | REAR SUSPENSION: | | | | | | | | Type:_spring | | | | | | | | AIR SYSTEM: | | | | | | | | Compressor Capacity ccm(cfm): 13.2 cfm @1250_rpm Cut-out kPa(psi): Cut-in kPa(psi): Cut-in kPa(psi): | | | | | | | | lst Axl | ::
:: | · · · | | _ 2nd Axle: | | | | 3rd Ax | e: | | | _ Treadle Valve:_ | | | | Bobtail Proportioning: Front Axle Lin | | | | | niting: | | | Bobtail Proportioning: | | | | | | | | Spring Brake Inversion Valve: Number of Brakes Controlled: | | | | | | | | Specifics Regarding Air Brake System Components: | | | | | | | | AIR TANK VOLUMES 1 (cu.in.): | | | | | | | | Supply:
Auxiliary: | | | Primary:
Isolated From | n Service? □ | Secondary: | | | Supply: Primary: Secondary: | | | | | | | | Special conditions or equipment which might affect brake performance:Air_Dryer | | | | | | | | Special condition | ons or equ | iipment whi | ch might affec | t brake performan | ce: <u>Air</u> Dry e r_ | | | | | | | | | | ¹Cam, disc, wedge, etc. ² Cast or composite drum, vented **or** non-vented **rotor**, etc. ³ Size and diaphragm or piston ⁴ Same or opposite to forward wheel rotation ⁵ Relative to rear axle(s) centerline (include sketch if necessary) Figure 10.1 - GMC School Bus - Unit A, FMVSS No. 105 Spring Suspension, Hydraulic Brakes, 193" Wheelbase, GAWR Front 8100, GAWR Rear 19000 Figure 10.2 - GMC School Bus Typical Labeco 5th Wheel Installation For Independent Measurement of Vehicle Speed Figure 10.3 - GMC School Bus - FMVSS No. 105 Typical Steer Axle Hydraulic Brake Disc Assembly for a Budd Type Wheel Figure 10.4 - GMC School Bus - FMVSS No. 105 Typical Drive Axle Hydraulic Brake Disc Assembly for a Budd Type Wheel Figure 10.5 - Freightliner / Thomas Built School Bus - Unit B, FMVSS No. 105 Spring Suspension, Hydraulic Brakes, 252" Wheelbase, GAWR Front 7560, GAWR Rear 17940 Figure 10.6 - Freightliner / Thomas Built School Bus - FMVSS No. 105 Typical Seating Arrangement - Empty Condition For GVWR test, sand bag ballast was added under the seats and on the benches. Figure 10.7 - Freightliner / Thomas Built School Bus - FMVSS No. 105 Potentiometric Displacement Measurement of Brake Pedal Typically Applied on FMVSS 105 - Hydraulic Braked Vehicle Tests Figure 10.8 - Freightliner / Thomas Built School Bus - FMVSS No. 105 Open view for driver during test operations. Note Instruments: A - Pedal Force Meter, B - Deceleration Indicator, C - Signal Conditioning Unit, D - PC Data Acquisition Controller. Figure 10.9 - Freightliner / Thomas Built School Bus - FMVSS No. 105 Typical Steer Axle Hydraulic Brake Disc Assembly for a Spoke Type Wheel ¥ 5 Figure 10.10 - Freighther 6x4 Straight Truck - Unit C, FMVSS No. 121 Air Suspension, Au Brakes, 180" Wheelbase, GAWR Front 12000, GAWR Rear 40000 Figure 10.11 - Peterbilt 6x4 Straight Truck - Unit D, FMVSS No. 121 Spring Suspension, Air Brakes, 3 11" Wheelbase, GAWR Front 20000, GAWR Rear 40000 Note: the two tag axles were lifted for the duration of this test series. Figure 10.12 - Peterbilt 6x4 Straight Truck - Unit D, FMVSS No. 121 Note Driver Feedback Devices: - A Labeco Performance Monitor for initial speed and stopping distance B Analog dial gauge for control pressure - C Fluke digital **thermometer** for monitoring brake lining temperatures D Data Acquisition Control PC and signal conditioning package **Figure 10.13 - Peterbilt 6x4 Straight Truck -** Unit **D, FMVSS No. 121**Second drive axle undergoing brake force measurement on a roller, brake dynamometer. Note: typical installation of wheel tachometer generators used to indicate individual wheel speeds. Figure 10.14 - Navistar 6x4 Straight Truck - Unit E, FMVSS No. 121 Spring Suspension, Air Brakes, 238" Wheelbase, GAWR Front 15000, GAWR Rear 46000 with high CG load frame and ballast. **Figure 10.15 - Navistar 6x4 Straight Truck -** Unit E, FMVSS No. 121 Data acquisition system cushioned by right seat and secured by seat belt, nylon web seat bottom strap, and polyethylene binders. **Figure 10.16 - 4900 Navistar 4x2 Straight Truck -** Unit F, FMVSS No. 121 Spring Suspension, Air Brakes, 152" Wheelbase, GAWR Front 14600, GAWR Rear 2 1000 was tested with Navistar Hi-CG Load Frame (shown here with VRTC Load Frame). Figure 10.17 - 2674 Navistar 4x2 Straight Truck - Unit G, FMVSS No. 121 Spring Suspension, Air Brakes, 148" Wheelbase, GAWR Front 20000, GAWR Rear 30000 with Navistar Hi-CG load frame. Figure 10.18 - 2674 Navistar 4x2 Straight Truck - Unit G, FMVSS No. 121 Spring Suspension, Air Brakes, 148" Wheelbase, GAWR Front 20000, GAWR Rear 30000 with 20" integral front extended rail. DOT HS 808 941 February 1999